350 rub
Journal Technologies of Living Systems №4 for 2015 г.
Article in number:
The influence of intragastric administration of zinc (II) asparaginate distribution of toxic trace elements in organs and tissues of laboratory animals
Authors:
A.A. Skalny - Physician, ANO «Centre for Biotic Medicine», Moscow. E-mail: andrey_sk@microelements.ru A.A. Tinkov - Ph.D. (Med.), Assistant, Department of Biochemistry, Orenburg State Medical University, Orenburg, Russia; Researcher, Laboratory of Biotechnology and Applied Bioelementology, Yaroslavl State UniversityYaroslavl, Russia. E-mail: tinkov.a.a@gmail.com Yu. S. Medvedeva - Research Scientist, Laboratory of Physicochemical and Ecological Pathophysiology, Institute of General Pathology and Pathophysiology, Moscow, Russia I.B. Alchinova - Research Scientist, Laboratory of Physicochemical and Ecological Pathophysiology, Institute of General Pathology and Pathophysiology, Moscow, Russia O.P. Ajsuvakova - Ph.D. (Chem), Assistant, Department of Chemistry, Orenburg State Pedagogical University, Orenburg, Sovetskaya. E-mail: oajsuvakova@gmail.com E.Yu. Bonitenko - Dr.Sc. (Med.), Professor, Director of Federal State Scientific Institution «Institute of Toxicology», Federal Medico-Biological Agency, St. Petersburg, Russia M.Yu. Karganov - Dr. Sc. (Biol.), Professor, Head of Laboratory of Physicochemical and Ecological Pathophysiology, Institute of General Pathology and Pathophysiology, Moscow, Russia. E-mail: mkarganov@mail.ru A.A. Nikonorov - Dr. Sc. (Med.), Professor, Head of Department of Biochemistry, Orenburg State Medical University, Orenburg, Russia. E-mail: nikonorov_all@mail.ru M.G. Skalnyay - Dr.Sc. (Med.), Professor, Directir of ANO «Centre for Biotic Medicine», Moscow Yu.N. Lobanova - Ph.D. (Biol.), Deputy Head of Department of Laboratory of LLC «Micronutrients»
Abstract:
Determination the influence of Zn on the distribution of toxic trace elements in the body. Methods: The content of Zn and toxic trace elements in the liver, kidney, heart, skeletal muscle, serum and hair of Wistar rats by the daily intragastric administration of zinc (II) asparaginate (Zn (C4NO4H6) 2 ∙ Zn (OH) 2) in doses of 5 and 15 mg / kg for 7 and 14 days was studied. The animals received ad libitum diet standard PC-120 for the maintenance of laboratory animals (LLC "Laborator-korm", Moscow) with a total energy value of 307 kcal / 100 g and the determine content of the metals. After removing the animals from the experiment, the samples of the liver, kidneys, heart, calf serum, and animal hair were extracted. The chemical analysis of the samples (determination of Zn, Al, As, Li, Ni, Pb, Sn, Sr) was carried out by mass spectrometry with inductively coupled argon plasma on the device NexION 300D (PerkinElmer Inc., Shelton, CT 06484, USA), equipped with automatic dispenser ESI SC-2 DX4 in compliance with the manufacturer's instructions and the use of standard solutions of trace elements and reference samples. Results: intragastric administration of zinc (II) asparaginata leads to a change in the content of the metal in the organs and tissues of animals with more significant changes to the 14th day of the experiment in relation to the dosage of 15 mg / kg. In the muscle tissue and wool no any changes of Zn content were observed in all stages of the experiment. Changing the content of toxic metals and metalloids had multidirectional nature. Thus, reducing the Al content was observed in the liver, muscle and wool, Li - in muscle, Ni - in the liver, kidney, heart, muscle and wool, Pb - in muscle, Sn - in the liver and serum, Sr - in the kidney, heart and wool. Elevated levels of As was found in the heart and serum, Li - in the kidney and heart (day 7), Pb- in heart.Conclusion: The results of this study showed redistribution of toxic metals in the body of animals under the influence of zinc (II) asparaginate entrance. At the same time, more research is needed to clarify the nature and study the mechanisms of the observed effects.
Pages: 17-28
References

 

  1. Agostinho M., Kobayashi S. Strontium-catalyzed highly enantioselective Michael additions of malonates to enones // J. Am. Chem. Soc. 2008. V. 130. R. 2430-2431.
  2. Albert A. The covalent bond in selective toxicity. In (Albert A., Ed.) Selective toxicity, Springer Netherlands. 1985. P. 550-589
  3. Alissa E.M., Ferns G.A. Heavy metal poisoning and cardiovascular disease // J. Toxicol. 2011. 870125.
  4. Angelusiu M.V., Barbuceanu S.F., Draghici C., Almajan G.L. New Cu (II), Co (II), Ni (II) complexes with aroyl-hydrazone based ligand. Synthesis, spectroscopic characterization and in vitro antibacterial evaluation // Eur. J. Med. Chem. 2010. V. 45. P. 2055-2062.
  5. Bagihalli G.B., Avaji P.G., Patil S.A., Badami P.S. Synthesis, spectral characterization, in vitro antibacterial, antifungal and cytotoxic activities of Co (II), Ni (II) and Cu (II) complexes with 1, 2, 4-triazole Schiff bases // Eur. J. Med. Chem. 2008. V. 43. P. 2639-2649.
  6. Beck M.T., Nagypal I. Complex equilibria: stability constants. New York: Halsted Press. 1989.
  7. Bhasin P., Singla N., Dhawan D.K. Protective role of zinc during aluminum-induced hepatotoxicity // Environ. Toxicol. 2014. V. 29. P. 320-327.
  8. Bray T.M., Bettger W.J. The physiological role of zinc as an antioxidant // Free Radic. Biol. Med. 1990. V. 8. P. 281-91.
  9. Chadha V.D., Bhalla P., Dhawan D.K. Zinc modulates lithium-induced hepatotoxicity in rats // Liver Int. 2008. V. 28. P. 558-565.
  10. Cotton F.A., Wilkinson G., Murillo C.A., Bochmann M. Advances in Inorganic Chemistry. 6th ed. Wiley. New York. 1999
  11. Emsley J. The elements. Clarendon press. Oxford. 1989
  12. Goyer R.A. Toxic and essential metal interactions // Annu. Rev. Nutr. 1997. V. 17. P. 37-50.
  13. Hyman M.A. Environmental toxins, obesity, and diabetes: an emerging risk factor // Altern. Ther. Health Med. 2010. V. 16. P. 56.
  14. Johnson M.A., Greger J.L. Absorption, distri­bution and endogenous excretion of zinc by rats fed various dietary levels of inorganic tin and zinc // J. Nutr. 1984. V. 114. P. 1843-1852.
  15. Jomova K., Vondrakova D., Lawson M., Valko M. Metals, oxidative stress and neurodegenerative disorders // Mol. Cell Biochem. 2010. V. 345.  P. 91-104.
  16. Kowall T., Caravan P., Bourgeois H., Helm L., Rotzinger F.P., Merbach A.E. Interpretation of Activation Volumes for Water Exchange Reactions Revisited: Ab I nitio Calculations for Al3+, Ga3+, and In3+, and New Experimental Data // J. Am. Chem. Soc. 1998. V. 120. P. 6569-6577.
  17. Krahl T., Kemnitz E. The very strong solid Lewis acids aluminiumchlorofluoride (ACF) and bromofluoride (ABF)-Synthesis, structure, and Lewis acidity // J. Fluorine Chem. 2006. V. 127. P. 663-678.
  18. Maldanis R.J., Wood J.S., Chandrasekaran A., Rausch M.D., Chien J.C. The formation and polymerization behavior of Ni (II) α-diimine complexes using various aluminum activators // J. Organomet. Chem. 2002. V. 645. P. 158-167.
  19. Maret W., Vallee B.L. Thiolate ligands in me­tallothionein confer redox activity on zinc clusters // Proc. Natl. Acad. Sci. USA. 1998. V. 95.  P. 3478-3482.
  20. Maret W. The function of zinc metallothionein: a link between cellular zinc and redox state // J. Nutr. 2000. V. 130. P. 1455S-1458S
  21. Matsukura T., Tanaka H. Applicability of zinc complex of L-carnosine for medical use // Biochemistry Mosc. 2000. V. 65. P. 817-823.
  22. Nriagu J.O. A history of global metal pollution // Science. 1996. V. 272. P. 223.
  23. Oliveira D.M., Lacava Z.G., Lima E.C., Morais P.C., Tedesco A.C. Zinc phthalocyanine/magnetic fluid complex: a promising dual nanostructured system for cancer treatment // J. Nanosci. Nanotechnol. 2006. V. 6. P. 2432-2437.
  24. Oliveira J.P., Querido W., Caldas R.J., Campos A.P., Abraçado L.G., Farina M. Strontium is incorporated in different levels into bones and teeth of rats treated with strontium ranelate // Calcified Tissue Int. 2012. V. 91. P. 186-195.
  25. Peraza M.A., Ayala-Fierro F., Barber D.S., Casarez E., Rael L.T. Effects of micronutrients on metal toxicity // Environ. Health Perspect. 1998. V. 106. P. 203.
  26. Powell S.R. The antioxidant properties of zinc // J. Nutr. 2000. V. 130. P. 1447S-54S.
  27. Prasad A.S. Clinical, immunological, anti-inflammatory and antioxidant roles of zinc // Exp. Geront. 2008. V. 43. P. 370-377.
  28. Rezlescu E., Sachelarie L., Popa P.D., Rezlescu N. Effect of substitution of divalent ions on the electrical and magnetic properties of Ni-Zn-Me ferrites // IEEE Trans. Magn. 2000. V. 36. P. 3962-3967.
  29. Ribas J., Escuer A., Monfort M., Vicente R., Cortés R., Lezama L., Rojo T. Polynuclear Ni II and Mn II azido bridging complexes. Structural trends and magnetic behavior // Coord. Chem. Rev. 1999. V. 193. P. 1027-1068.
  30. Roesijadi G. Metal transfer as a mechanism for metallothionein-mediated metal detoxification // Cell Mol. Biol. 2000. V. 46. P. 393-405.
  31. Sakurai H., Adachi Y. The pharmacology of the insulinomimetic effect of zinc complexes // Biometals. 2005. V. 18. P. 319-323.
  32. Shindo H., Brown T.L. Infrared Spectra of Complexes of L-Cysteine and Related Compounds with Zinc (II), Cadmium (II), Mercury (II), and Lead (II) // J. Am. Chem. Soc. 1965. V. 87. P. 1904-1909.
  33. Sidhu P., Garg M.L., Dhawan D.K. Effect of zinc on biological half-lives of 65Zn in whole body and liver and on distribution of 65Zn in different organs of rats following nickel toxicity // Biol. Trace Elem. Res. 2004. V. 102. P. 173-188. 
  34. Solov-ev V.P., Kireeva N.V., Tsivadze A.Y., Var-nek A.A. Structure-property modelling of com­plex formation of strontium with organic ligands in water // J. Struct. Chem. 2006. V. 47.  P. 298-311.
  35. Tandon A., Nagpaul J.P., Bandhu H., Singh N., Dhawan D.K. Effect of lithium on hepatic and serum elemental status under different dietary protein regimens // Biol. Trace Elem. Res. 1999. V. 68. P. 51-62.
  36. Thomsen K., Schou M. Renal lithium excretion in man // Am. J. Physiol. 1968. V. 215. P. 823-827.
  37. Valko M., Morris H., Cronin M.T.D. Metals, toxicity and oxidative stress // Current medicinal chemistry. 2005. V. 12(10). P. 1161-1208.
  38. Vallee B.L., Auld D.S. Zinc coordination, function, and structure of zinc enzymes and other proteins // Biochemistry. 1990. V. 29. P. 5647-5659.
  39. Vašák M., Meloni G. Chemistry and biology of mammalian metallothioneins // JBIC J. Biol. Inorg. Chem. 2011. V. 16. P. 1067-1078.
  40. Wiesbrock F., Schmidbaur H. The structural chemistry of lithium, sodium and potassium anthranilate hydrates // J. Chem. Soc., Dalton Trans. 2002. V. 24. P. 4703-4708.
  41. Xin F., Pope M.T. Lone-Pair-Induced Chirality in Polyoxotungstate Structures: Tin (II) Derivatives of A-Type XW9O34 n-(X= P, Si). Interaction with Amino Acids // J. Am. Chem. Soc. 1996. V. 118. P. 7731-7736.
  42. Zhao L.J., Ren T., Zhong R.G. Determination of lead in human hair by high resolution continuum source graphite furnace atomic absorption spectrometry with microwave digestion and solid sampling // Analyt. Lett. 2012. V. 45. P. 2467-81.
  43. Zou M.H., Shi C., Cohen R.A. Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite // J. Clin. Invest. 2002. V. 109. P. 817-826.