350 rub
Journal Technologies of Living Systems №2 for 2015 г.
Article in number:
Electrochemical assessment of metabolic activity of rhodococcal cells immobilized on planar graphite electrode
Authors:
I.A. Cherenkov - Ph.D. (Biol.), Associate Professor, Udmurt State University, Russia, Izhevsk T.N. Kropacheva - Ph. D. (Chem.), Associate Professor, Udmurt State University, Russia, Izhevsk E.A. Perevozchikov - Student, Udmurt State University, Russia, Izhevsk V.G. Sergeev - Dr. Sc. (Biol.), Professor, Udmurt State University, Russia, Izhevsk
Abstract:
In recent decades considerable attention is paid to bioelectrochemical systems (BESs) involving microbial cells which can be used as biosensors and fuel cell bioanodes. The relevance of this research lies in implementation of biotechnological po-tential of actinobacteria of the genus Rhodococcus as a component of BESs. The goal of this research is to model an electrochemical system based on Rhodococcus sp. cells with methylene blue as an electron transfer mediator. Rhodococcus sp. cells immobilization on the surface of the working graphite electrode was studied by luminescent and atomic force microscopy. This research proves efficiency of the combined cell immobilization which includes cells adsorption on the graphite electrode followed by coating with an agarose gel. Redox transformation of methylene blue on the electrode with immobilized cells was studied by cyclic voltammetry. It showed that the introduction of energy substrates was accompanied by the peak current increase corresponding to electrochemical oxidation processes of the methylene blue, whilst recovery current values remained almost unchanged. It was found that changes of the current intensity are depen-dent upon the concentration of an energy substrate.
Pages: 12-19
References

 

  1. Katz E., Shipway A.N., Willner I.Mediated electron-transfer between redox-enzymes and electrode supports //Encyclopedia of Electrochemistry, V. 9: Bioelectrochemistry, Ed. by G.S. Wilson. Wiley-VCH GmbH. Weinheim. 2002. P. 559-626.
  2. Katz E., Shipway N.A., Willner I. Biochemical fuel cells // Handbook of fuel cells - fundamentals technology and applications, V. 1: Fundamentals and Survey of Systems. Ed. by W. Vielstich, H.A. Gasteiger, A. Lamm. John Wiley and Sons Ltd. 2003. P. 355-381.
  3. BudnikovG.K., EvtjuginG.A., MajjstrenkoV.N.Modificirovannyeehlektrodydljavoltamperometriivkhimii, biologiiimedicine. M.: BINOM. Laboratorija znanijj. 2010. 416 s.
  4. Biosensory: osnovy i prilozhenija: per. s angl. /pod red. EH.Ternera, I.Karube, Dzh. Uilsona. M.: Mir. 1992. S. 20-33, 238-257.
  5. Ponamorjova O.N., Indzhgija E.JU., Alferov V.A., Reshetilov A.N.EHffektivnost bioehlektrokataliticheskogo okislenija ehtanola celymi kletkami i membrannojj frakciejj bakterijj Gluconobacteroxydansv prisutstvii mediatorov ferrocenovogo rjada // EHlektrokhimija. 2010. T. 46. № 12. S. 1503-1508. (Ponamoreva O.N., Indzhgiya E. Yu.,AlferovV. A.,Reshetilov A. N. Efficiency of bioelectrocatalytic oxidation of ethanol by whole cells and membrane fractions of Gluconobacter oxydans bacteria in the presence of mediators of ferrocene series //Russ. J. Elektrochem. 2010. V. 46. № 12. P. 1408-1413).
  6. Kuzmichjova E.V., Reshetov V.A., Kazarinov I.A., Ignatov O.V. Razrjadnye kharakteristiki mikrobnogo toplivnogo ehlementa na osnove mikroorganizma Escherichia coli // EHlektrokhimicheskaja ehnergetika. 2007. T. 7. №1. S. 33-37.
  7. Jung M., Metzger D.Methylene blue protects mitochondrial respiration from ethanol withdrawal stress. // Advances in Bioscience and Biotechnology. 2013. № 4. P. 24-34.
  8. Oz M., Lorke D.E., Hasan M., Petroia­nu G.A. Cellular and molecular ac­tions of Methylene Blue in the nerv­ous system // Med. Res. Rev. 2011. V 31(1). P. 93-117.
  9. Rojas J.C., Bruchey A.K., Gonzalez-Lima F.Neurometabolic mechanisms for memory enhancement and neuroprotection of methylene blue // Prog. Neurobiol. 2012. V. 96(1). P. 32-45.
  10. Jay J.M., Loessner M.J., Golden D.A. Modern food microbiology / Springer, 2005. 255 p.
  11. Roach P.C.J., Ramsden D.K., Hughes J., Williams P. Development of a conductimetric biosensor using immobilized Rhodococcus ruber whole cells for the detection and quantification of acrylonitrile // Biosensors and Bioelectronics. 2003. V. 19. P. 73-78.
  12. Reshetilov A.N., Iliasov P.V., Reshetilova T.A. The microbial cell based biosensors / in Intelligent and Biosensors, by: V.S. Somerset. INTECH, Croatia, 2010. P. 289-322.
  13. Aly H.A.H., Huu N.B., Wray V., Junca H. et al.Two Angular Dioxygenases Contribute to the Metabolic Versatility of Dibenzofuran-Degrading Rhodococcussp. Strain HA01// Applied and environmental microbiology. 2008. V. 74(12). P. 3812-3822.
  14. Rapp P., Gabriel-Jurgens L.H.E.Degradation of alkanes and highly chlorinated benzenes, and production of biosurfactants, by a psychrophilic Rhodococcus sp. and genetic characterization of Its chlorobenzene dioxygenase// Microbiology. 2003. V. 149. P. 2879-2890.
  15. Rubcova E.V., Krivoruchko A.V., JArullina D.R. i dr.Vlijaniefiziko-khimicheskikh svojjstv ak-­
  16. tinobakterijjroda Rhodococcusna ikh adgeziju k polistirolu i n-geksadekanu // Fundamentalnye issledovanija. 2013. № 4.S. 900-904.
  17. Ivshina I.B., Tarasova E.V., Osipenko M.A. i dr. Matematicheskoe modelirovanie biomekhaniki processa biotransformacii betulina nerastushhimi kletkami Rhodococcus rhodoch­rous IEHGM 66 // Rossijjskijj zhurnal biomekhaniki. 2013. T. 17. №1 (59). C. 110-121.
  18. Kuyukina M.S., Ivshina I.B.,Serebrennikova M.K.et al. Petroleum-contaminated water treatment in a fluidized-bed bioreactor with immobilized Rhodococcus cells // International Biodeteri­oration & Biodegradation.2009. V. 63.  P. 427-432.
  19. Kuyukina M.S., Ivshina I.B., Kamenskikh T.N., et al. Survival of cryogel-immobilizedRhodococcusstrains in crude oil-contaminated soil and their impact on biodegradation efficiency // International Biodeterioration & Biodegradation.2013. V. 84.P. 118-126.
  20. Barsan M.M., Pinto E.M., Brett C.M.A. Methylene blue and neutral red electropolymerisation on AuQCM and on modified AuQCM electrodes: an electrochemical and gravimetric study // Phys. Chem. Chem. Phys. 2011. № 13. P. 5462-5471.
  21. Yokoyama K., Kayanuma Y. Cyclic voltammetric simulation for electrochemically mediated enzyme reaction and determination of enzyme kinetic constants // Anal. Chem. 1998. V. 70.  P. 3368-3376.