350 rub
Journal Technologies of Living Systems №6 for 2014 г.
Article in number:
The use of silver nanoparticls in biomedical research
Authors:
G.V. Maksimov - Dr.Sc. (Biol.), Professor, Department of Biophysics, Faculty of Biology, Moscow State University, Moscow. E-mail: gmaksimov@mail.ru V.A. Trofimov - Dr.Sc. (Biol.), Professor, Head of the Department of Genetics, Biological Faculty, Mordovia State University. NP Ogareva Russia, Republic of Mordovia, Saransk. E-mail: geneticlab@yandex.ru D.I. Sidorov - Post-graduate Student, Department of Genetics, Junior Research Scientist, REC «Nanobiotechnology» Mordovia State University. NP Ogareva E-mail geneticlab@yandex.ru S.S. Kovalenko - Post-graduate Student, Department of Biophysics, Biological Faculty, Lomonosov Moscow State University, Moscow V.V. Shutova - Ph.D. (Biol.), Associate Professor, Faculty of Biology Biotechnology, Mordovia State University. NP Ogareva. E-mail vshutova@yandex.ru E.A. Goodilin - Corresponding Member, Professor, Russian Academy of Sciences, Department of Materials Science, Moscow State University
Abstract:
Using nanostructured substrates based on silver (NSP) obtained a significant enhancement of the Raman scattering (RS) of biological molecules (DNA, nucleotides, hemoglobin, carotenoids), which is important for the diagnosis of its content and conformation in the blood. In the analysis of red blood cells, using the NSP and recording RS is not from the cytoplasmic and from membrane bound hemoglobin localized at a distance of 10-15 nm from NSP. It is found that the RS hemoglobin of red blood cells in the NSP does not differ by location of the peaks, but more intense, especially in the low-frequency region spectrum. Found that, with the help of the RS and the NRS with greater sensitivity can be controlled by changing the concentration and molecular conformation carotene, registering both the magnitude of the RS intensity and the ratio of the value of the band intensities of the RS of carotene. This allows you to record the RS of carotene to plasma proteins, which is important for clinical diagnosis. It has been established, that reducing the amplitude of the functional groups of deoxyribose DNA RS indicates an increase rigidity \"framework\" of the double helix of DNA oligonucleotides at pathology. Change in the amplitude of the intensity RS of functional groups of nitrogenous bases, as well as the appearance of new bands indicates the structural changes within the DNA double helix, which may be due to local melting of DNA due to violation of the complementary mating modified nitrogenous bases, and perhaps there are gaps.
Pages: 13-20
References

 

  1. Ozaki Y, Iriyama K., Tanpakushitsu Kakusan Koso. Raman spectroscopic study of age- and cataract-related structural changes in the lens proteins of intact lenses // Appl. Spectrosc. Rev. V. 33(6). P. 1098-110.
  2. Edwards H.G., Farwell D.W., Holder J.M., Lawson E.E. Fourier-transform Raman spectra of ivory. III: Identification of mammalian specimens // Spectrochim Acta A Mol Biomol Spectrosc. 1997. Nov. V. 53A(13). P. 2403-2409.
  3. Otto C.M., Burwash I.G., Legget M.E., Munt B.I., Fujioka M., Healy N.L., Kraft C.D., Miyake-Hull C.Y., Schwaegler R.G. Prospective study of asymptomatic valvular aortic stenosis. Clinical, echocardiographic, and exercise predictors of outcome // Circulation. 1997. May 6. V. 95(9). P. 2262-2270.
  4. Yusipovich A.I., Braze N.A., Luneva O.G., Parshina E.Y., Churin A.A., Rodnenkov O.V., Maksimov G.V. Changes in the state of hemoglobin in patients with coronary heart disease and patients with circulatory failure. Bull Exp Biol Med. 2013. Jun. V. 155(2). P. 233-235.
  5. Brazhe N.A., Abdali S., Brazhe A.R., Luneva O.G., Bryzgalova N.Y., Parshina E.Y., Sosnovtseva O.V., Maksimov G.V.New insight into erythrocyte through in vivo surface-enhanced raman spectroscopy // Biophysical Journal. 2009. V. 97. Issue 12. P. 3206-3214.
  6. Choi S., Spiro T.G., Langry K.C., Smith K.M., Budd D.L., La Mar G.N. Structural correlations and vinyl influences in resonance Raman spectra of protoheme complexes and proteins // J. Amer. Chem. Soc. 1982. 104. P. 4345-4351.
  7. Kitagawa T., Kyogoku Y., Iizuka T.Nature of the iron ligand bond in ferrous low spin hemoproteins studied by resonance Raman  scattering. J. Amer. Chem. Soc. 1976. V. 98. P. 5169-5173.
  8. Leopold N., Lendl B. A new method for fast preparation of highly surface-enhanced raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride // J. Phys. Chem. 2003. V 107. P. 5723-5727.
  9. Moskovits M. Surface-enhanced spectroscopy. Rev.Mod. Phys. 1985. V. 57. P. 783-827.
  10. Stein P., Burke I.M., Spiro T.G.Structural interpretation of heme protein resonance Raman frequencies. Preliminary normal coordinate analysis results // J. Amer. Chem. Soc. 1975. V. 97. P. 2304-2305.
  11. Wang Z., Pan S., Krauss T.D., Du H., Rothberg L.J. The structural basis for giant enhancement enabling single-molecule Raman scattering // Proc. Nat. Acad. Sci. USA. 2003. V. 100. P. 8638-8643.
  12. Hacker H.J., Zhang W., Tokus M., Bock T., Schroder C.H. Patterns of circulating hepatitis V virus serum nucleic acids during lamivudine therapy // Ann. N.Y. Acad. 2004. Sci. 1022. P. 271-281.
  13. Fedchenko V.I., Gurev CO., Semjonova N.V. Neinvazivnaja prenatalnaja PCR diagnostika pola // Biomedicinskaja khimija. 2005. V. 51. P. 527-535.
  14. Rainer T.H., Lo Y.M., Chan L.Y.et al. Derivation of a prediction rule for posttraumatic organ failure using plasma DNA and other variables // Ann. N.Y. Acad. Sci. 2001. V. 945. P. 211-220.
  15. Alekseev G.A., Berliner G.B.Gemoglobinurija. M.: Medicina. 1972. 248 c.
  16. Idelson L.I., Didkovskijj N.A., Ermilchenko G.V.Gemoliticheskie anemii. M.: Medicina. 1975. 254 c.
  17. Koller T., Hawrylenko A.Contribution to thein vitro testing of pumps for extracorporealcirculation // J. Thorac. Cardiovasc Surg. 1967. V. 54. C. 22.
  18. Blakney G.B., Dinwoodie A.J.A spectrophotometric scanning technique for the rapid determination of plasma hemoglobin // Clin. Biochem. 1975. V. 54. C. 22.
  19. Morris L.D., Pont A., Lewis S.M.Use of a new HemoCue system for measuring haemoglobin at low concentrations // Clin. Lab. Haematol. 2001. V. 23. № 2. R. 91-96.
  20. Semenova A.A., Goodilin E.A., Brazhe N.A., Ivanov V.K., Baranchikov A.E., Lebedev V.A., Goldt A.E., Sosnovtseva O.V., Savilov S.V., Egorov A.V., Brazhe A.R., Parshina E.Y., Luneva O.G., Maksimov G.V., and Tretyakov Y.D. Planar sers nanostructures with stochastic silver ring morphology for biosensor chips // Journal of Materials Chemistry. 2012. № 1. P. 24530-24544.
  21. Boodram Laura-Lee. Extraction of genomic DNA from whole blood / Protocol Online - Your Lab\'s Reference Book - online database of research protocols in a variety of life science fields [Electronic resource]. 1999-2006. Mode of access: http://www.protocol-online.org/prot/Protocols/ Extraction-of-genomic-DNA-from-whole-blood-3171.html
  22. Westermeier R. Scheibe B Difference gel electrophoresis based on lys/cys tagging // Methods Mol. Biol. 2008. V. 424. P. 73-85.
  23. Peskin A.V.Vzaimodejjstvie aktivnogo kisloroda s DNK // Biokhimija. 1997. T.62. Vyp. 12. S.1571-1578.