350 rub
Journal Technologies of Living Systems №5 for 2014 г.
Article in number:
Evaluation of cooper nanoparticles bioactivity mechanisms using the Triticum aestivum and Allium cepa tests
Authors:
T.D. Deryabina - Research Scientist, All-Russian Scientific Institute of Beef Cattle Breeding, RAAS, Orenburg. E-mail: DeriabinaTatiana@yandex.ru
I.V. Gryazeva - Post-graduate Student, Department of Microbiology, Orenburg State University. E-mail: gryazevai@mail.ru
L.V. Efremova - Head of Laboratory, Department of Microbiology, Orenburg State University. E-mail: lv.efremova@yandex.ru
D.B. Kosyan - Research Scientist, All-Russian Scientific Institute of Beef Cattle Breeding, RAAS, Orenburg. E-mail: kosyan.diana@mail.ru
A.A. Kulsarin - Head of Laboratory, Department of Biophysics and Physics, Orenburg State University. E-mail: kulsarin@mail.ru
Abstract:
The spherical cooper nanoparticles (nanoCu) 84±5 nm in diameter was found to be active in plant germination tests. The first step in assessing their biological potential was the phytotoxicity evaluation on Triticum aestivum. Wheat seeds were exposed to demineralized quartz sand soaked with water suspension of nanoCu from 0,1 М (6,35 mg/mL) to 0,00039 М (24,8 μg/mL). The nanoparticles caused a slight inhibition in the growth of the tested plant seedlings in comparison to the control, whereas markedly blocked the root development. The roots length and mass decreases, and roots became thicker and branched. Transmission electron microscopy revealed in root cells the numerous contrast spherical objects that were identical nanoparticles used. The results indicated that nanoCu migrated from cultivation media and penetrated deep into the plant root tissues via intracellular contact system. Using atomic absorbtion spectroscopy, a significant increase in the cooper content in Triticum aestivum incubated with nanoparticles has been shown. In Allium cepa test nanoCu inhibited the root development as well as cause suppression of mitotic activity of root meristem cells. No mitotic defects were generated, but pyknotic nuclei including condensed chromatin were observed. DNA fragmentation in Allium cepa roots treated with nanoCu was shown. The results showed that the cooper nanoparticles admission into plant cells induces genotoxic effect that cause mitotoxic effect and leads to violation of the model plant roots growth.
Pages: 17-25
References

 

  1. Vanyushin B.F. Apoptoz u rastenij // Uspexi biologicheskoj ximii. 2001. T. 41. S. 3-38.
  2. Deryabina T.D. Oczenka bezopasnosti ionov, nano- i mikrochasticz zheleza i medi v teste prorastaniya semyan Triticum aestivum // Vestnik Orenburgskogo gosudarstvennogo universiteta. 2011. №12 (131). S. 386-389.
  3. Deryabin D.G., Aleshina E.S., Vasil'chenko A.S., Deryabina T.D., Efremova L.V., Karimov I.F., Korolevskaya L.B. Issledovanie mexanizmov antibakterial'noj aktivnosti nanochasticz medi v testax nalyuminescziruyushhix shtammax Escherichia coli // Rossijskie nanotexnologii. 2012. T. 8 (№ 5-6). S. 113-118.
  4. Zhigach A.N., Kuskov M.L., Lejpunskij I.O., Stoenko N.I., Storozhev V.B. Poluchenie ul'tradispersny'x poroshkov metallov, splavov, soedinenij metallov metodom Gena-Millera: istoriya, sovremennoe sostoyanie, perspektivy' // Rossijskie nanotexnologii. 2012. T. 7 (№ 3-4). S. 28-39.
  5. Lakin G.F. Biometriya. M.: Vy'sshaya shkola. 1990. 352 s.
  6. Metodicheskie ukazaniya 1.2.2635-10 // Mediko - biologicheskaya oczenka bezopasnosti nanomaterialov. M.: Federal'ny'j czentr gigieny' i e'pidemiologii Rospotrebnadzora. 2010. 123 s.
  7. Sizova E.A., Miroshnikov S.A., Polyakova V.S., Lebedev S.V., Glushhenko N.N. Nanochasticzy' medi ? modulyatory' apoptoza i strukturny'x izmenenij v nekotory'x organax // Morfologiya. 2013. № 4. S. 47-52.
  8. Atha D.H., Wang H., Petersen E.J., Cleveland D., Holbrook R.D., Jaruga P., Dizdaroglu M., Xing B., Nelson B.C. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models // Environ. Sci. Technol. 2012. V. 46. P. 1819−1827.
  9. Babu K., Deepa M., Shankar S., Rai S. Effect of nano-silver on cell division and mitotic chromosomes: A prefatory siren // The Internet Journal of Nanotechnology. 2007. V. 2(2).
  10. Ghosh M., Bandyopadhyay M., Mukherjee A. Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes // Chemosphere. 2010. V. 81. P. 1253-1262.
  11. Gottschalk F., Sonderer T., Scholz R.W., Nowack B. Modeled environmental concentrations of engineering nanoparticles (TiO2, ZnO, Ag, CNT, fullerenes) for different regions // Environ. Sci. Technol. 2009. V. 43. P. 9216-9222.
  12. Faisal M., Saquib Q., Alatar A.A., Al-Khedhairy A.A., Hegazy A.K., Musarrat J. Phytotoxic hazards of NiO-nanoparticles in tomato: A study on mechanism of cell death // J. Hazard. Mater. 2013. V. 250-251. P. 318-332.
  13. Kahru A., Dubourguier H.-C., Blinova I., Ivask A., Kasemets K. Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: A minireview // Sensors. 2008. V. 8. P. 5153-5170.
  14. Klančnik K., Drobne D., Valant J., Dolenc K.J. Use of a modified Allium test with nanoTiO2 // Ecotoxicol. Environ. Saf. 2011. V. 74. P. 85-92.
  15. Lead J.R., Wilkinson K.J. Natural aquatic colloids: current knowledge and future trends // Environ. Chem. 2006. V. 3. P. 159-171.
  16. Lee W. M., An Y. J., Yoon H., Kweon H.S. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): Plant agar test for water-insoluble nanoparticles // Environ. Toxicol. Chem. 2008. V. 27. P. 1915−1921.
  17. Lee C.W., Mahendra S., Zodrow K. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana // Environ. Toxicol. Chem. 2010. V. 29. P. 669-675.
  18. Musante C., White J.C. Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles // Environ. Toxicol. 2012. V. 27. P. 510-517.
  19. Stampoulis D., Sinha S. K., White J.C. Assay-dependent phytotoxicity of nanoparticles to plants // Environ. Sci. Technol. 2009. V. 43. P. 9473−9479.