350 rub
Journal Technologies of Living Systems №4 for 2014 г.
Article in number:
Influence of perinatal iron exposure on metabolic syndrome development in male Wistar rats
Authors:
A.A. Tinkov - Post-graduate Student, Department of Biochemistry, Orenburg State Medical Academy, Orenburg. E-mail: tinkov.a.a@gmail.com
E.V. Popova - Ph.D. (Med.), Associate Professor, Department of Biochemistry, Orenburg State Medical Academy, Orenburg. E-mail: pmvug@inbox.ru
A.A. Nikonorov - Dr.Sc. (Med.), Professor, Head of Department of Biochemistry, Orenburg State Medical Academy, Orenburg, E-mail: nikonorov_all@mail.ru
Abstract:
The primary aim of the current study was to estimate the effect of perinatal iron sulfate exposure on metabolic syndrome development. Perinatal iron exposure was modeled by feeding pregnant and lactating female rats with drinking water containing 3 mg/l iron sulfate (FeSO4-7H2O) (FePN). Intact rats obtained pure drinking water (Control). The male offspring was fed standard (STD) of high-fat diet (HFD) postnatally forming the following groups: Control-STD; FePN-STD; Control-HFD; FePN-HFD. It is estimated that perinatal iron exposure along with postnatal HFD-feeding resulted in a significant 23% increase in adipose tissue mass when compared to the HFD-controls. Animals in this group were also characterized by hyperglycaemia, hyperinsulinemia and significant increase in insulin resistance index HOMA-IR values in comparison to the HFD-control group. FePN-HFD rats had a 38% increased triglycerides level and significantly decreased apoprotein A1 to apoprotein B ratio when compared to the respective control group. Perinatal iron treatment significantly increased the level of triene conjugates in serum heptane phase in comparison to the control animals. The latter reflects activation of systemic oxidative stress. Elevated serum iron and ferritin levels if perinatal iron-treated group indicate cumulation of the metal in the rats - organism. While the majority of parameters studied were affected by the diet type, analysis of variance indicated the significant impact of perinatal iron exposure on animal morphometric parameters, insulin and triglyceride levels, apoprotein spectrum and serum iron and ferritin concentrations. Generally, the results indicate that perinatal iron exposure leads to cumulation of the latter in the organism, consequently leading to potentiation of diet-induced metabolic syndrome in rats. The possible mechanism of these changes is iron-induced activation of free-radical oxidation.
Pages: 10-19
References

  1. Vladimirov Yu.A., Archakov A.I. Perekisnoe okislenie lipidov v biologicheskikh membranakh. M.: Nauka. 1972. 258 s.
  2. Volchegorskiy I.A., Dolgushin I.I., Kolesnikov O.L., Tseylikman V.E. Eksperimental'noe modelirovanie i laboratornaya otsenka adaptivnykh reaktsiy organizma. Chelyabinsk: Izd-vo Chelyabinskogo gos. pedagog. un-ta. 2000. 167 s.
  3. Dushkin M.I. Makrofag/penistaya kletka kak atribut vospaleniya: mekhanizmy obrazovaniya i funktsional'naya rol' // Biokhimiya. 2012. T. 77. S. 419-432.
  4. Dushkin M.I. Makrofagi i ateroskleroz: patofiziologicheskie i terapevticheskie aspekty // Byullyuten' SO RAMN. 2006. № 2. S. 47-55.
  5. Men'shikova Ye.B., Lankin V.Z., Zenkov N.K., Bondar' I.A., Krugovykh N.F., Trufakin V.A. Okislitel'nyy stress: antioksidanty i prooksidanty. M.: Firma «Slovo». 2006. 556 s.
  6. Nikonorov A.A., Tin'kov A.A., Zheleznov L.M., Ivanov V.V. Metodicheskiy podkhod k izucheniyu ozhireniya v eksperimente. Orenburg: Yuzhnyy Ural. 2013. 238 s.
  7. Alberti K.G., Zimmet P., Shaw J. The metabolic syndrome (a new worldwide definition // Lancet. 2005. V. 366. P. 1059-1062.
  8. Banks W.A., Coon A.B., Robinson S.M., Moinuddin A., Shultz J.M., Nakaoke R., Morley J.E. Triglycerides induce leptin resistance at the blood-brain barrier // Diabetes. 2004. V. 53(5). P. 1253-1260.
  9. Cameron A.J., Shaw J.E., Zimmet P.Z. The metabolic syndrome: prevalence in worldwide populations // Endocrinol. Metab. Clin. North. Am. 2004. V. 33(2). P. 351(375
  10. Ceriello A., Motz E.Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease?  The common soil hypothesis revisited // Arterioscler.Thromb.Vasc. Biol. 2004. V. 24(5). P. 816-823.
  11. Cetin I., Berti C., Mandò C., Parisi F. Placental iron transport and maternal absorption // Ann. Nutr. Metab. 2011. V. 59(1). P. 55-58.
  12. Courtois F., Suc I., Garofalo C., Ledoux M., Seidman E., Levy E. Iron-ascorbate alters the efficiency of Caco-2 cells to assemble and secrete lipoproteins // Am. J. Physiol.G astrointest. Liver Physiol. 2000. V. 279(1). P. 12-19.
  13. Datz C., Felder T.K., Niederseer D., Aigner E. Iron homeostasis in the metabolic syndrome // Eur. J.Clin. Invest. 2013. V. 43(2). P. 215-224.
  14. de Oliveira Otto M.C., Alonso A., Lee D.H., Delclos G.L., Bertoni A.G., Jiang R., Lima J.A., Symanski E., Jacobs D.R. Jr., Nettleton J.A. Dietary intakes of zinc and heme iron from red meat, but not from other sources, are associated with greater risk of metabolic syndrome and cardiovascular disease // J. Nutr. 2012. V. 142(3). P. 526-533.
  15. Dongiovanni P., Fracanzani A.L., Fargion S., Valenti L. Iron in fatty liver and in the metabolic syndrome: a promising therapeutic target // J. Hepatol. 2011. V. 55(4). P. 920(932.
  16. Eckel R.H., Grundy S.M., Zimmet P.Z. The metabolic syndrome // Lancet. 2005. V. 365(9468). P. 1415-1428.
  17. Evans J.L., Maddux B.A., Goldfine I.D. The molecular basis for oxidative stress-induced insulin resistance // Antioxid. Redox. Signal. 2005. V. 7(7(8). P. 1040-1052.
  18. Fujita K., Nishizawa H., Funahashi T., Shimomura I., Shimabukuro M. Systemic oxidative stress is associated with visceral fat accumulation and the metabolic syndrome // Circ. J. 2006. V. 70(11). P. 1437-1442.
  19. Gabrielsen J.S., Gao Y., Simcox J.A., Huang J., Thorup D., Jones D., Cooksey R.C., Gabrielsen D., Adams T.D., Hunt S.C., Hopkins P.N., Cefalu W.T., McClain D.A. Adipocyte iron regulates adiponectin and insulin sensitivity // J. Clin. Invest. 2012. V. 122(10). P. 3529-3540.
  20. Garg A. Adipose tissue dysfunction in obesity and lipodystrophy // Clin. Cornerstone. 2006. V. 8. Suppl 4. P. 7(13.
  21. Haluzík M., Parízková J., Haluzík M.M. Adiponectin and its role in the obesity-induced insulin resistance and related complications //Physiol. Res. 2004. V. 53(2). P. 123-129.
  22. Hu M.L. Measurement of protein thiol groups and glutathione in plasma // Methods Enzymol. 1994. V. 233. P. 380-385.
  23. Ikeda Y., Suehiro T., Nakamura T., Kumon Y., Hashimoto K. Clinical significance of the insulin resistance index as assessed by homeostasis model assessment // Endocr. J. 2001. V. 48(1). P. 81-86.
  24. Kim R.S., LaBella F.S. Comparison of analytical methods for monitoring autoxidation profiles of authentic lipids // J. Lipid. Res.1987. V. 28(9). P. 1110(1117.
  25. Levine R.L., Garland D., Oliver C.N., Amici A., Climent I., Lenz A.G., Ahn B.W., Shaltiel S., Stadtman E.R. Determination of carbonyl content in oxidatively modified proteins // Methods Enzymol. 1990. V. 186. P. 464-478.
  26. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the folin phenol reagent // J. Biol. Chem.1951. V. 193. P. 265-275.
  27. Matsuzawa-Nagata N.,TakamuraT., AndoH., NakamuraS., KuritaS., MisuH., OtaT., YokoyamaM., HondaM., MiyamotoK., Kaneko S. Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity // Metabolism. 2008. V. 57(8). P. 1071-1077.
  28. Maury E., Brichard S.M. Adipokinedysregulation, adipose tissue inflammation and metabolic syndrome // Mol. Cell. Endocrinol. 2010. V. 314(1). P. 1-16.
  29. Meneghini R. Iron homeostasis, oxidative stress, and DNA damage // Free Radic. Biol. Med. 1997. V. 23(5). P. 783-792.
  30. Ohkawa H., Ohishi N., Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction // Anal. Biochem. 1979. V. 95(2). P. 351-358.
  31. Reaven G.M. Banting lecture 1988. Role of insulin resistance in human disease // Diabetes. 1988. V. 37(12). P. 1595-1607.
  32. Reaven G.M. Role of insulin resistance in human disease (syndrome X): an expanded definition // Annu. Rev. Med. 1993. V. 44. P. 121-131.
  33. Roberts C.K., Sindhu K.K. Oxidative stress and metabolic syndrome // LifeSci. 2009. V. 84(21(22). P. 705-712.
  34. Sies H. Oxidative stress: oxidants and antioxidants // Exp. Physiol. 1997. V. 82(2). P. 291-295.
  35. Taylor B.A., Phillips S.J. Detection of obesity QTLs on mouse chromosomes 1 and 7 by selective DNA pooling // Genomics.1996. V. 34(3). P. 389-398.
  36. Vaziri N.D., Rodríguez-Iturbe B. Mechanisms of disease: oxidative stress and inflammation in the pathogenesis of hypertension // Nat Clin. Pract. Nephrol. 2006. V. 2(10). P. 582-593.
  37. Xiao X., Liu J., Luo B., Feng X., Su Y. Relationship of dietary iron intake, body iron overload and the risk of metabolic syndrome // Journal of Hygiene Research. 2011. V. 40(1). P. 32-35.