350 rub
Journal Technologies of Living Systems №2 for 2014 г.
Article in number:
Nomogram of hemodynamic states for parameters of blood pressure
Keywords:
Data Mining
support vector machine
nomogram
classification
regression
blood pressure
hemodynamics
Authors:
M.V. Voitikova - Ph.D. (Phys.-Math.), Leading Research Scientist , Institute of Physics, National Academy of Sciences, , Minsk, Belarus. E-mail: voitikova@imaph.bas-net.by
R.V. Khursa - Ph.D. (Med.), Assoсiate Professor, Belarusian Medical State University, Minsk, Belarus. E-mail: Rvkhursa@tut.by
R.V. Khursa - Ph.D. (Med.), Assoсiate Professor, Belarusian Medical State University, Minsk, Belarus. E-mail: Rvkhursa@tut.by
Abstract:
This paper presents a nomogram for classifying of the hemodynamic states, based on linear regression modeling of blood pressure (BP) parameters and Data Mining algorithm called Support Vector Machine (SVM). We analyzed the BP recordings for day, night and 24-h periods. The regression coefficients as the information patterns are compared with a library of hemodynamic samples of the patients with known diagnoses. The so-called feature vector, whose coordinates are the linear regression coefficients of the systolic and diastolic pressure on pulse pressure, is applied to the nomogram. Determined position of the vector in limited area on the nomogram corresponds to normal hemodynamics of the cardiovascular system. The pathological changes of hemodynamics inherent in hypertension, hypotension or clinically latent hemodynamic disturbances can be diagnosed according a position of the feature vector on the nomogram.
Pages: 45-53
References
- Chubukova I.A. Data Mining. Binom. Laboratoriya znanij // Internet-universitet informaczionny'x texnologij. Ser. Osnovy' informaczionny'x texnologij. 2006. 384 s.
- Kuzneczova A.V., Sen'ko O.V. Vozmozhnosti ispol'zovaniya metodov Data Mining pri mediko-laboratorny'x issledovaniyax dlya vy'yavleniya zakonomernostej v massivax danny'x // Vrach i informaczionny'e texnologii. 2005. № 2.
- Kushakovskij M.S. Gipertonicheskaya bolezn'. SPb.: Sotis.1995. 32 s.
- Rashmer R. Dinamika serdechno-sosudistoj sistemy': per. s angl. M.A. Beznosovoj, T.E. Kuzneczovoj / pod red. G.I. Kosiczkogo. M.: Mediczina. 1981. 600 s.
- Benetos A., Lacolley P. From 24-Hour Blood Pressure Measurements to Arterial Stiffness: A Valid Short Cut - // Hypertension. 2006. V. 47. P. 327-328.
- Dolan E., Thijs L., Li Y., et al. Ambulatory arterial stiffness index as a predictor of cardiovascular mortality in the Dublin Outcome Study // Hypertension. 2006. V. 47. P. 365-370.
- Xursa R.V. Pul'sovoe davlenie krovi: rol' v gemodinamike i prikladny'e vozmozhnosti v funkczional'noj diagnostike // Mediczinskie novosti. 2013. № 4. S. 13-19.
- Xursa R.V., Chebotarev V.M. Gemodinamicheskie determinanty' gomeostaza serdechno-sosudistoj sistemy' // Klinicheskaya fiziologiya krovoobrashheniya. 2007. № 4. S. 71-77.
- Anoxin P.K. Uzlovy'e voprosy' teorii funkczional'noj sistemy'. M.: Nauka. 1980. 197 s.
- Patent BY № 6950. Sposob diagnostiki diastolicheskoj disfunkczii krovoobrashheniya / V.M. Chebotarev, R.V. Xursa.
- Patent BY №6952. Sposob diagnostiki sis-tolicheskoj disfunkczii krovoobrashheniya / V.M. Chebotarev, R.V. Xursa.
- Patent BY №4876. Sposob permanentnogo kontrolya individual'nogo funkczional'nogo sostoyaniya krovoobrashheniya / V.M. Chebotarev, R.V. Xursa, V.M. Baly'sheva.
- Vojtikova M.V., Vojtovich A.P., Xursa R.V. Primenenie intellektual'nogo analiza danny'x dlya klassifikaczii gemodinamicheskix sostoyanij // Vrach i informaczionny'e texnologii. 2013. № 1. S. 32-41.
- Voitikova M.V., Khursa R.V. Linear regression in hemodynamics // Nonlinear Phenomena in Complex Systems. 2012. V. 15. № 2. P. 203-206.
- Sutochny'j monitor arterial'nogo davleniya BPLab. URL: http://www.bplab.ru
- The MIMIC II Project database. URL: http://physionet.org/physiobank/database/mimic2db
- Xursa R.V. Nepul'siruyushhij komponent arterial'nogo davleniya pri razny'x sposobax opredeleniya i novy'e gemodinamicheskie xarakteristiki // Arterial'naya gipertenziya i profilaktika serdechno-sosudisty'x zabolevanij. Materialy' VI Mezhdunar. konf. Vitebsk: VGMU. 2011. C. 83-87.
- Vapnik V. Statistical learning theory. Berlin: Springer. 1998. 732 p.