350 rub
Journal Technologies of Living Systems №2 for 2013 г.
Article in number:
Genetic studies of bone tumors
Authors:
N.E. Kushlinskii, Yu.S. Timofeev, E.V. Generozov, I.V. Boulytcheva, Yu.N. Soloviev
Abstract:
Bone tumors are rare, but extremely a complicated group of neoplasms in diagnostics and therapy. Ethiology and pathogenesis of this group haven-t been explained enough yet. In this review we collect the data of actual investigations, connected with molecular-genetic and cytogenetic aspects of bone tumors. We consider genetic characteristics, associated with osteogenic sarcoma, Ewing sarcoma, chondrosarcoma, malignant fibrous histiocitoma, giant cell bone tumor, chordoma, aneurysmal cyst. In addition we give the results of our investigation of nucleotide polymorphisms in patients with bone tumors.
Pages: 5-17
References
  1. Szuhai K., Tanke H. COBRA: combined binary ratio labeling of nucleic-acid probes for multi-color fluorescence in situ hybridization karyotyping // Nature Protocols. 2006. V. 1. № 1. С. 264 -275.
  2. Trask B.J. Human cytogenetics: 46 chromosomes, 46 years and counting // Nature reviews. 2002. V. 3.
    P. 769 - 778.
  3. Szuhai K., Jennes I., de Jong D., Bovée J.V., Wiweger M., Wuyts W., Hogendoorn P.C. Tiling resolution array-CGH shows that somatic mosaic deletion of the EXT gene is causative in EXT gene mutation negative multiple osteochondromas patients // Hum. Mutat. 2011. V. 32. P.2036e2049.
  4. De Jong D., Verbeke S.L., Meijer D., Hogendoorn P.C., Bovee J.V., Szuhai K.Opening the archives for state of the art tumour genetic research: sample processing for array-CGH using decalcified, formalin-fixed, paraffin-embedded tissue-derived DNA samples // BMC Res. Notes. 2011. V.4. P.1.
  5. Savola S., Nardi F., Scotlandi K., Picci P., Knuutila S. Microdeletions in 9p21.3 induce false negative results in CDKN2A FISH analysis of Ewing sarcoma // Cytogenet. Genome. Res. 2007. V. 119. № 1 - 2. P. 21 - 26.
  6. Van Eijk R., Licht J., Schrumpf M., Talebian Yazdi M., Ruano D., Forte G.I., Nederlof P.M., Veselic M., Rabe K.F., Annema J.T., Smit V., Morreau H., van Wezel T. Rapid KRAS, EGFR,BRAF and PIK3CA mutation analysis of fine needle aspirates from non-small-cell lung cancer using allele-specific qPCR // PLoS ONE. 2011. V.6. P. e17791.
  7. Setty P., Hammes J., Rothämel T., Vladimirova V., Kramm C.M., Pietsch T., Waha A. A pyrosequencing-based assay for the rapid detection of IDH1 mutations in clinical samples // J. Mol. Diagn. 2010. V. 12. № 6. Р. 750 - 756.
  8. Cuppen E. Genotyping by Allele-Specific Amplification (KASPar) // CSH Protoc. 2007:pdb.prot4841.
  9. Smith L.M., Sanders J.Z., Kaiser R.J., Hughes P., Dodd C., Connell C.R., Heiner C., Kent S.B., Hood L.E. Fluorescence detection in automated DNA sequence analysis // Nature. 1986. V. 321. № 6071. Р. 674 - 679.
  10. Ronaghi M., Uhlen M., Nyren P. A sequencing method based on real-time pyrophosphate // Science. 1998. V. 281. № 5375. P. 363 - 365.
  11. Sokolov B.P. Primer extension technique for the detection of single nucleotide in genomic DNA // Nucleic Acids Res. 1990. V. 18. № 12. Р. 3671.
  12. Haff L.A., Smirnov I.P. Single-nucleotide polymorphism identification assays using a thermostable DNA polymerase and delayed extraction MALDI-TOF mass spectrometry // Genome Res. 1997. V. 7. № 4. P.378 ? 388.
  13. Higuchi R., Fockler C., Dollinger G., Watson R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions // Biotechnology (NY). 1993. V. 11. № 9. P. 1026 - 1030.
  14. Yershov G., Barsky V., Belgovskiy A., Kirillov E., Kreindlin E., Ivanov I., Parinov S., Guschin D., Drobishev A., Dubiley S., Mirzabekov A. DNA analysis and diagnostics on oligonucleotide microchips // Proc. Natl. Acad. Sci. USA. 1996. V. 93. № 10. P. 4913-4918.
  15. Sandberg A.A., Bridge J.A. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: chondrosarcoma and other cartilaginous neoplasms // Cancer Genet. Cytogenet. 2003. V. 143. № 1. P. 1 - 31.
  16. Stephens P.J., Greenman C.D., Fu B., Yang F., Bignell G.R., Mudie L.J., Pleasance E.D., Lau K.W., Beare D., Stebbings L.A., McLaren S., Lin M.L., McBride D.J., Varela I., Nik-Zainal S., Leroy C., Jia M., Menzies A., Butler A.P., Teague J.W., Quail M.A., Burton J., Swerdlow H., Carter N.P., Morsberger L.A., Iacobuzio-Donahue C., Follows G.A., Green A.R., Flanagan A.M., Stratton M.R., Futreal P.A., Campbell P.J. Massive genomic rearrangement acquired in a single catastrophic event during cancer development // Cell. 2011. V. 144. P. 27 - 40.
  17. Nielsen G.P., Burns K.L., Rosenberg A.E., Louis D.N. CDKN2A gene deletions and loss of p16 expression occur in osteosarcomas that lack RB alterations // Am. J. Pathol. 1998. V. 153. P. 159 - 163.
  18. Wei G., Lonardo F., Ueda T., Kim T., Huvos A.G., Healey J.H., Ladanyi M. CDK4 gene amplification in osteosarcoma: reciprocal relationship with INK4A gene alterations and mapping of 12q13 amplicons // Int. J. Cancer. 1999. V. 80. P. 199 - 204.
  19. Wunder J.S., Gokgoz N., Parkes R., Bull S.B., Eskandarian S., Davis A.M., Beauchamp C.P., Conrad E.U., Grimer R.J., Healey J.H., Malkin D., Mangham D.C., Rock M.J., Bell R.S., Andrulis I.L. TP53 mutations and outcome in osteosarcoma: a prospective, multicenter study // J. Clin. Oncol. 2005. V. 23. P. 1483 - 1490.
  20. Overholtzer M., Rao P.H., Favis R., Lu X.Y., Elowitz M.B., Barany F., Ladanyi M., Gorlick R., Levine A.J. The presence of p53 mutations in human osteosarcomas correlates with high levels of genomic instability // Proc. Natl. Acad. Sci. USA. 2003. V. 100. P. 11547 - 11552.
  21. Miller C.W., Ikezoe T., Krug U., Hofmann W.K., Tavor S., Vegesna V., Tsukasaki K., Takeuchi S., Koeffler H.P. Mutations of the CHK2gene are found in some osteosarcomas, but are rare in breast, lung, and ovarian tumors // Genes Chromosomes Cancer. 2002. V. 33. № 1. P. 17 - 21.
  22. Mohseny A.B., Tieken C., van der Velden P.A., Szuhai K., de Andrea C., Hogendoorn P.C., Cleton-Jansen A.M. Small deletions but not methylation underlie CDKN2A/p16 loss of expression in conventional osteosarcoma // Genes Chromosomes Cancer. 2010. V. 49. P. 1095 ? 1103.
  23. Sanders R.P., Drissi R., Billups C.A., Daw N.C., Valentine M.B., Dome J.S. Telomerase expression predicts unfavorable outcome in osteosarcoma // J. Clin. Oncol. 2004. V. 22. P. 3790 - 3797.
  24. Ulaner G.A., Huang H.Y., Otero J., Zhao Z., Ben-Porat L., Satagopan J.M., Gorlick R., Meyers P., Healey J.H., Huvos A.G., Hoffman A.R., Ladanyi M. Absence of a telomere maintenance mechanism as a favorable prognostic factor in patients with osteosarcoma // Cancer Res. 2003. V. 63. P. 1759 - 1763.
  25. Hayden J.B., Hoang B.H.Osteosarcoma: Basic Science and Clinical Implications // Orthop. Clin. N. Am. 2006. V. 37. P. 1 - 7.
  26. Mintz M.B., Sowers R., Brown K.M., Hilmer S.C., Mazza B., Huvos A.G., Meyers P.A., Lafleur B., McDonough W.S., Henry M.M., Ramsey K.E., Antonescu C.R., Chen W., Healey J.H., Daluski A., Berens M.E., Macdonald T.J., Gorlick R., Stephan D.A. An expression signature classifies chemotherapy-resistant pediatric osteosarcoma // Cancer Res. 2005. V. 65. P. 1748 - 1754.
  27. Ochi K., Daigo Y., Katagiri T., Nagayama S., Tsunoda T., Myoui A., Naka N., Araki N., Kudawara I., Ieguchi M., Toyama Y., Toguchida J., Yoshikawa H., Nakamura Y. Prediction of response to neoadjuvant chemotherapy for osteosarcoma by gene-expression profiles // Int. J. Oncol. 2004. V. 24. P. 647 - 655.
  28. Leonard P., Sharp T., Henderson S., Hewitt D., Pringle J., Sandison A., Goodship A., Whelan J., Boshoff C. Gene expression array profile of human osteosarcoma // Br. J. Cancer. 2003. V. 89.
    P. 2284 - 2288.
  29. Nakano T., Tani M., Ishibashi Y., Kimura K., Park Y.B., Imaizumi N., Tsuda H., Aoyagi K., Sasaki H., Ohwada S., Yokota J. Biological properties and gene expression associated with metastatic potential of human osteosarcoma // Clin. Exp. Metastasis. 2003. V. 20. P. 665 - 674.
  30. Khanna C., Khan J., Nguyen P., Prehn J., Caylor J., Yeung C., Trepel J., Meltzer P., Helman L. Metastasis associated differences in gene expression in a murine model of osteosarcoma // Cancer Res. 2001. V. 61. P. 3750 - 3759.
  31. Zucchini C., Bianchini M., Valvassori L., Perdichizzi S., Benini S., Manara M.C., Solmi R., Strippoli P., Picci P., Carinci P., Scotlandi K. Identification of candidate genes involved in the reversal of malignant phenotype of osteosarcoma cells transfected with the liver/bone/kidney alkaline phosphatase gene // Bone. 2004. V. 34. P. 672 - 679.
  32. Wolf M., El-Rifai W., Tarkkanen M., Kononen J., Serra M., Eriksen E.F., Elomaa I., Kallioniemi A., Kallioniemi O.P., Knuutila S. Novel findings in gene expression detected in human osteosarcoma by cDNA microarray // Cancer Genet. Cytogenet. 2000. V. 123. P. 128 - 132.
  33. Kuijjer M.L., Rydbeck H., Kresse S.H., Buddingh E.P., Lid A.B., Roelofs H., Bürger H., Myklebost O., Hogendoorn P.C., Meza-Zepeda L.A., Cleton-Jansen A.M. Identification of Osteosarcoma Driver Genes by Integrative Analysis of Copy Number and Gene Expression Data // Genes, chromosomes & cancer. 2012. V. 51.  P. 696 - 706.
  34. Both J., Wu T., Bras J., Schaap G.R., Baas F., Hulsebos T.J. Identification of Novel Candidate Oncogenes in Chromosome Region 17p11.2-p12 in Human Osteosarcoma // PLoS ONE. 2012. V. 7. № 1: e30907. doi:10.1371/journal.pone.0030907.
  35. Mirabello L., Yu K., Berndt S.I., Burdett L., Wang Z., Chowdhury S., Teshome K., Uzoka A., Hutchinson A., Grotmol T., Douglass C., Hayes R.B., Hoover R.N., Savage S.A. A comprehensive candidate gene approach identifies genetic variation associated with osteosarcoma // BMC Cancer. 2011. V. 11. P. 209.
  36. Caronia D., Patiño-Garcia A., Peréz-Martínez A., Pita G., Moreno L.T., Zalacain-Díez M., Molina B., Colmenero I., Sierrasesúmaga L., Benítez J., Gonzalez-Neira A. Effect of ABCB1 and ABCC3 polymorphisms on osteosarcoma survival after chemotherapy: a pharmacogenetic study //PLoS One. 2011. V. 6. № 10:e26091. Epub 2011 Oct 7.
  37. Savage S.A., Woodson K., Walk E. et al. Analysis of Genes Critical for Growth Regulation Identifies Insulin-like Growth Factor 2 Receptor Variations with Possible Functional Significance as Risk Factors for Osteosarcoma // Cancer Epidemiol. Biomarkers Prev. 2007. V. 16. P. 1667 - 1674.
  38. Lessnick S.L., Braun B.S., Denny C.T., May W.A. Multiple domains mediate transformation by the Ewing-s sarcoma EWS/ FLI-1 fusion gene // Oncogene. 1995. V. 10. P. 423 - 431.
  39. Nakatani F., Tanaka K., Sakimura R., Matsumoto Y., Matsunobu T., Li X., Hanada M., Okada T., Iwamoto Y. Identification of p21WAF1/CIP1 as a direct target of EWS-Fli1 oncogenic fusion protein // J. Biol. Chem. 2003. V. 278. P. 15105 - 15115.
  40. Prieur A., Tirode F., Cohen P., Delattre O. EWS/FLI-1 silencing and gene profiling of Ewing cells reveal downstream oncogenic pathways and a crucial role for repression of insulin-like growth factor binding protein 3 // Mol. Cell Biol. 2004. V. 24. P. 7275 - 7283.
  41. Hancock J.D., Lessnick S.L. A transcriptional profiling metaanalysis reveals a core EWS-FLI gene expression signature // Cell Cycle. 2008. V. 7.  P. 250 ? 256.
  42. Toomey E.C., Schiffman J.D., Lessnick S.L. Recent advances in the molecular pathogenesis of Ewing-s sarcoma // Oncogene. 2010. V. 29. P. 4504 - 4516.
  43. Fuchs B., Inwards C., Scully S.P., Janknecht R. hTERT is highly expressed in Ewing-s sarcoma and activated by EWS-ETS oncoproteins // Clin. Orthop. Relat. Res. 2004. V. 426. P. 64 - 68.
  44. Fuchs B., Inwards C.Y., Janknecht R. Vascular endothelial growth factor expression is up-regulated by EWS-ETS oncoproteins and Sp1 and may represent an independent predictor of survival in Ewing-s sarcoma // Clin. Cancer Res. 2004. V. 10. P. 1344 - 1353.
  45. Gangwal K., Sankar S., Hollenhorst P.C., Kinsey M., Haroldsen S.C., Shah A.A., Boucher K.M., Watkins W.S., Jorde L.B., Graves B.J., Lessnick S.L.Microsatellites as EWS/FLI response elements in Ewing-s sarcoma // Proc. Natl. Acad. Sci. USA. 2008. V. 105. P. 10149 - 10154.
  46. Herrero-Martín D., Osuna D., Ordóñez J.L., Sevillano V., Martins A.S., Mackintosh C., Campos M., Madoz-Gúrpide J., Otero-Motta A.P., Caballero G., Amaral A.T., Wai D.H., Braun Y., Eisenacher M., Schaefer K.L., Poremba C., de Alava E. Stable interference of EWS-FLI1 in an Ewing sarcoma cell line impairs IGF-1/IGF-1R signalling and reveals TOPK as a new target // Br. J. Cancer. 2009. V. 101. P. 80 - 90.
  47. Sankar S., Lessnick S.L.Promiscuous partnerships in Ewing-s sarcoma // Cancer Genet. 2011. V. 204.
    P. 351 - 365.
  48. Szuhai K., Cleton-Jansen A.M., Hogendoorn P.C., Bovée J.V. Molecular pathology and its diagnostic use in bone tumors // Cancer Genet. 2012. V. 205.  P. 193 - 204.
  49. Wang J., Zhou Y., Feng D., Yang H., Li F., Cao Q., Wang A., Xing F. CD86 +1057G/A polymorphism and susceptibility to Ewing's sarcoma: a case-control study // DNA Cell Biol. 2012. V. 31. № 4. P. 537 - 540.
  50. Amary M.F., Bacsi K., Maggiani F., Damato S., Halai D., Berisha F., Pollock R., O'Donnell P., Grigoriadis A., Diss T., Eskandarpour M., Presneau N., Hogendoorn P.C., Futreal A., Tirabosco R., Flanagan A.M.  IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours // J. Pathol. 2011. V. 224. P. 334 - 343.
  51. Schrage Y.M., Lam S., Jochemsen A.G., Cleton-Jansen A.M., Taminiau A.H., Hogendoorn P.C., Bovée J.V. Central chondrosarcoma progression is associated with pRb pathway alterations; CDK4 downregulation and p16 overexpression inhibit cell growth in vitro // J. Cell Mol. Med. 2008. V. 13. P. 2843 - 2852.
  52. Van Beerendonk H.M., Rozeman L.B., Taminiau A.H., Sciot R., Bovée J.V., Cleton-Jansen A.M., Hogendoorn P.C. Molecular analysis of the INK4A/INK4A-ARF gene locus inconventional (central) chondrosarcomas and enchondromas: indication of an important gene for tumour progression // J. Pathol. 2004. V. 202. P. 359 - 366.
  53. Bovee J.V.M.G., Van den Broek L.J.C.M., Cleton-Jansen A.M., Hogendoorn P.C. Up-regulation of PTHrP and Bcl-2 expression characterizes the progression of osteochondroma towards peripheral chondrosarcoma and is a late event in central chondrosarcoma // Lab. Invest. 2000. V. 80. P. 1925 - 1933.
  54. Rozeman L.B., Hameetman L., Cleton-Jansen A.M., Taminiau A.H., Hogendoorn P.C., Bovée J.V. Absence of IHH and detention of PTHrP signalling in enchondromas and central chondrosarcomas // J. Pathol. 2005. V. 205. P. 476 - 482.
  55. Bovee J.V., van Den Broek L.J., Cleton-Jansen A.M., Hogendoorn P.C. Chondrosarcoma is not characterized by detectable telomerase activity // J. Pathol. 2001. V. 193. №3. P. 354-360.
  56. Rofstad E.K.Microenvironment-induced cancer metastasis // Int. J. Radiat. Biol. 2000. V. 76. № 5.
    P. 589 - 605.
  57. Martin J.A., DeYoung B.R., Gitelis S., Weydert J.A., Klingelhutz A.J., Kurriger G., Buckwalter J.A. Telomerase reverse transcriptase subunit expression is associated with chondrosarcoma malignancy // Clin. Orthop. Relat. Res. 2004. V. 426. P. 117 - 124.
  58. Tarkkanen M., Larramendy M.L., Böhling T., Serra M., Hattinger C.M., Kivioja A., Elomaa I., Picci P., Knuutila S. Malignant fibrous histiocytoma of bone: Analysis of genomic imbalances by comparative genomic hybridization and C-MYC expression by immunohistochemistry // Eur. J. Cancer. 2006. V. 42. P.1172 - 1180.
  59. Matsuo T., Shimose S., Kubo T. Alternative lengthening of telomeres as a prognostic factor in malignant fibrous histiocytomas of bone // Anticancer Res. 2010. V. 30. P. 4959 - 4962.
  60. Hallor K.H., Staaf J., Jönsson G., Heidenblad M., Vult von Steyern F., Bauer H.C., Ijszenga M., Hogendoorn P.C., Mandahl N., Szuhai K., Mertens F. Frequent deletion of the CDKN2A locus in chordoma: analysis of  сhromosomal imbalances using array comparative genomic hybridisation // Br. J. Cancer. 2008. V. 98.  P. 434 - 442.
  61. Yang X.R., Ng D., Alcorta D.A., Liebsch N.J., Sheridan E., Li S., Goldstein A.M., Parry D.M., Kelley M.J. T (brachyury) gene duplication confers major susceptibility to familial chordoma // Nat. Genet. 2009. V.41. P. 1176 - 1178.
  62. Presneau N., Shalaby A., Ye H., Pillay N., Halai D., Idowu B., Tirabosco R., Whitwell D., Jacques T.S., Kindblom L.G., Brüderlein S., Möller P., Leithner A., Liegl B., Amary F.M., Athanasou N.N., Hogendoorn P.C., Mertens F., Szuhai K., Flanagan A.M. Role of the transcription factor T (brachyury) in the pathogenesis of sporadic chordoma: a genetic and functional-based study // J. Pathol. 2011. V. 223. P.327 - 335.
  63. Mak I.W., Cowan R.W., Popovic S., Colterjohn N., Singh G., Ghert M. Upregulation of MMP-13 via Runx2 in the stromal cell of giant cell tumor of bone // Bone. 2009. V. 45. № 2. P. 377 - 386.
  64. Babeto E., Conceição A.L.G., Valsechi M.C. Differentially expressed genes in giant cell tumor of bone // Virchows Arch. 2011. V. 458. P. 467 - 476.
  65. Fellenberg J., Lehner B., Witte D. Silencing of the UCHL1 gene in giant cell tumors of bone // Int. J. Cancer. 2010. V. 127. P. 1804 - 1812.
  66. Han Y.X., Liang D.Y. The role of the tumor suppressor RUNX3 in giant cell tumor of the bone // Int. J. Oncol. 2012. V. 40. P. 673 - 678.
  67. Panoutsakopoulos G., Pandis N., Kyriazoglou I., Gustafson P., Mertens F., Mandahl N. Recurrent t(16;17)(q22;p13) in aneurysmal bone cysts // Genes Chromosomes Cancer. 1999. V. 26. P. 265 - 266.
  68. Oliveira A.M., Hsi B.L., Weremowicz S., Rosenberg A.E., Dal Cin P., Joseph N., Bridge J.A., Perez-Atayde A.R., Fletcher J.A. USP6 (Tre2) fusion oncogenes in aneurysmal bone cyst // Cancer Res. 2004. V. 64.  P. 1920 - 1923.
  69. Oliveira A.M., Perez-Atayde A.R., Dal Cin P., Gebhardt M.C., Chen C.J., Neff J.R., Demetri G.D., Rosenberg A.E., Bridge J.A., Fletcher J.A.Aneurysmal bone cyst variant translocations upregulate USP6 transcription by promoter swapping with the ZNF9, COL1A1, TRAP150, and OMD genes // Oncogene. 2005. V. 24. P. 3419 - 3426.
  70. Oliveira A.M., Chou M.M., Perez-Atayde A., Rosenberg A.E. Aneurysmal bone cyst: a neoplasm driven by upregulation of the USP6 oncogene // J. Clin. Oncol. 2006. 24(1):el1.
  71. Masuda-Robens J.M., Kutney S.N., Qi H., Chou M.M. The TRE17 oncogene encodes a component of a novel effector pathway for Rho GTPases Cdc42 and Rac1 and stimulates actin remodeling // Mol. Cell Biol. 2003. V. 23. P. 2151 ? 2161.
  72. Ye Y., Pringle L.M., Lau A.W., Riquelme D.N., Wang H., Jiang T., Lev D., Welman A., Blobel G.A., Oliveira A.M., Chou M.M. TRE17/USP6 oncogene translocated in aneurysmal bone cyst induces matrix metalloproteinase production via activation of NF-kappaB // Oncogene. 2010. V. 29. P. 3619 ? 3629.
  73. Lau A.W., Pringle L.M., Quick L., Riquelme D.N., Ye Y.,
    Oliveira A.M., Chou M.M.
    TRE17/ubiquitin- specific protease 6 (USP6) oncogene translocated in aneurysmal bone cyst blocks osteoblastic maturation via an autocrine mechanism involving bone morphogenetic protein dysregulation // J. Biol. Chem. 2010. V. 285. № 47. P. 37111 - 37120.
  74. Sukov W.R., Franco M.F., Erickson-Johnson M., Chou M.M., Unni K.K., Wenger D.E., Wang X., Oliveira A.M. Frequency of USP6 rearrangements in myositis ossificans, brown tumor, and cherubism: molecular cytogenetic evidence that a subset of «myositis ossificans-like lesions» are the early phases in the formation of soft-tissue aneurysmal bone cyst // Skeletal Radiol. 2008. V. 37. P. 321 - 327.
  75. De Alava E., Kawai A., Healey J.H., Fligman I., Meyers P.A., Huvos A.G., Gerald W.L., Jhanwar S.C., Argani P., Antonescu C.R., Pardo-Mindan F.J., Ginsberg J., Womer R., Lawlor E.R., Wunder J., Andrulis I., Sorensen P.H., Barr F.G., Ladanyi M. EWS-FL11 fusion transcript structure is an independent determinant of prognosis in Ewing's sarcoma // J. Clin. Oncol. 1998. V. 16. P. 1248 - 1255.
  76. Bovée J.V.M.G., Hogendoorn P.C.W. Molecular pathology of sarcomas: concepts and clinical implications // Virchows Arch. 2010. V. 456. P. 193 - 199.