350 rub
Journal Technologies of Living Systems №8 for 2012 г.
Article in number:
Complex study of natural corals for bone tissue reconstruction/engineering. I. The study of physicochemical and cell matrix properties of natural corals
Authors:
N.S. Sergeeva, I.K. Sviridova, S.M. Barinov, V.S. Komlev, V.A. Kirsanova, S.A. Akhmedova, I.V. Fadeeva, T.N. Molodtsova, N.V. Petrakova, A.I. Antokhin, G.V. Pavlova, Ja.D. Shansky
Abstract:
The aim of the study was the comparative evaluation of wide taxonomy natural corals (NC) massive skeleton (18 species, 5 families of hermatype corals). Both physicochemical (chemical and phase composition, surface topography, solution kinetics) and biological (acute cytotoxicity, cell matrix properties, biocompatibility, osteoconductivity) characteristics of natural corals for bone tissue engineering were investigated. It was shown that only one from 18 coral species (Heliopora coerulea) was toxic for test-culture (human immortalized fibroblasts). All other NCs were not toxic and had different degree of matrix properties. Cells were actively attached to NCs corals surface and were colonized during long-term cultivation (up to 14 days). For comparative study of physicochemical properties eight NCs species from four families were selected: Acroporidae (3 spp.), Fingiidae (1 sp.), Faviidae (1 sp.) and Pocilloporidae (3 spp.). According to X-ray analysis, the main phase of studied NCs was aragonite (conformity to JCDD). It was reviled that all NCs specimens include transition metals impurities but they do not exceed admissible limit values (ASTM 1185 standard). The main element is strontium; its quantity in studied specimens did not exceed 0.81 % w/w. During NCs microstructure study a particular attention was directed to pores (their form, size and interconnections interporous partitions). The crystals morphology was also investigated . It was shown that NCs structure is different both for various families and for various NCs species of one family. The results of high-resolution scanning electronic microscopy show high dispersion crystalline formations in microstructure of studied NCs corals specimens. Biodegradation kinetics of 5 NCs species in model fluids (physiological solution and simulation body fluid (SBF)) was examined. It was shown that surface microrelief of corals changes during their degradation in SBF: the precipitation of biological apatite crystals was found and its amount was increased in dynamic of exposition of NCs specimens. These facts give evidence of high bioactivity of NCs. For evaluation of biocompatibility (model of subcutaneous NC implantation, mice) and osteoplastic potencies (model of Wistar rat tibia defect) the following NCs specimens were selected: Acroporidae (Acropora sp.2, Montipora digitata), Faviidae (Goniastrea retiformis) and Pocilloporidae (Pocillopora damicornis and P. eydouxi). It was revealed that in subcutaneous test these NCs do not induce local inflammation and rejection during all time of observation (4, 8, 12, 16, 20 weeks). These facts confirm biocompatibility of NCs. Both biodegradation rates in subcutaneous implantation area and in bone defect and osteoreparative properties of all five NCs species were similar. All NCs specimens had demonstrated their osteoconductive properties. We observe the gradual NCs biodegradation in bone defect area and their replacement by de novo forming bone tissue. The new bone ingrowth was detected not only in framework of the defect area but it was integrated with surrounding bone too, providing active vascularization of implant and osteogenic cells migration into defect zone. Therefore, the received results of physicochemical and biological study of NC suggested that they are perspective natural biomaterial for bone defect reconstruction and as 3D matrices for different types cells in tissue engineering.
Pages: 3-13
References
  1. VolkovA.V., AlekseevaI.S., KulakovA.A. etal.Regeneration of skull bones in adult rabbits after implantation of commercial osteoinductive materiaqls and transplantation of tissue-engineering construct. // Bull. Exp. Biol. Med. 2010. V. 149. № 4. P. 505-510.

  2. Neovius E., Engstrand T.Craniofacial reconstruction with bone and biomaterials: review over the last years. // J. Plast. Reconstr. Aesthet. Surg. 2010. V. 63.  № 10. P. 1615-1623.

  3. Chiara G., Letizia F., Lorenzo F. et al. Nanostructured biomaterials for tissue engineered bone tissue reconstruction // Int. J. Mol. Sci. 2012. V. 13. № 1. P. 737-757.

  4. Navarro M., Michiardi A., Castaño O., Planell J.A. Biomaterials in orthopaedics. // J. R. Soc. Interface. 2008. Vol. 5. № 27. P. 1137-1158.

  5. Balasundaram G., Webster T.J. Nanotechnology and biomaterials for orthopedic medical applications. // Nanomedicine (Lond.). 2006. V. 1. № 2. P. 169-176.

  6. Баринов С.М., Комлев В.С. Биокерамика на основе фосфатов кальция. М.: Наука. 2005.

  7. LeGeros R.Z. Properties of osteoconductive biomaterials: calcium phosphates. // Clin. Orthop. Relat. Res. 2002. V. 395. P. 81-98.

  8. Arcos D., Izquierdo-Barba I., Vallet-Regi M. Promising trends of bioceramics in the biomaterials field. // J. Mater. Sci. Mater. Med. 2009. V. 20. № 2. P. 447-455.

  9. DorozhkinS. V. Calcium orthophosphates: Occurrence, properties, biomineralization, pathological calcification and biomimetic applications. // Biomatter. 2011. V. 1. P. 121-164

  10. Вересов А.Г., Путляев В.И., Третьяков Ю.Д. Химия неорганических биоматериалов на основе фосфатов кальция // Российский химический журнал (Журнал Российского химического об-ва им. Д.И. Менделеева). 2004. T. XLVIII. № 4. C. 52-64.

  11. Воложин А.И., Курдюмов С.Г., Орловский В.П. и др. Создание нового поколения биосовместимых мате­риалов на основе фосфатов кальция для широкого применения в медицинской практике // Технологии живых систем. 2004. T. 1. № 1. C. 41-56.

  12. Комлев В.С., Фадеева И.В., Гурин А.Н. и др. Влияние содержания карбонат-групп в карбонатгидро­ксиапатитовой керамике на ее поведение in vivo // Неорганические материалы. 2009. T. 45. № 3б.  C. 373-378.

  13. Бакунова Н.В., Фомин А.С., Фадеева И.В. и др. Нанопорошки кремний-содержащего гидроксиапа­тита // ЖНХ. 2007. T. 52. № 10. C. 1594-1599.

  14. Кубарев О.Л., Баринов С.М., Фадеева И.В., Ком-

    лев В.С. Пористые керамические гранулы на основе гидроксиапатита и трикальцийфосфата для клеточных технологий реконструкции тканевых дефектов в хирургии // Перспективные материалы. 2005. № 2. C. 34-42.

  15. Сафронова Т.В., Путляев В.И., Авраменко О.А. и др. Порошок Са-дефицитного гидроксиапатита для получения керамики на основе трикальцийфосфата // Стекло и керамика. 2011. № 1. C. 27-31.

  16. Goldberg M.A., Smirnov V.V., Barinov S.M., et al. Influence of the synthesis conditions on sintering and properties of the hydroxyapatite -calcium carbonate system // Powder Metallurgy Progress. 2011. V.11.  № 3 - 4. P.265-270.

  17. Demers C., Hamdy C.R., Corsi K., et al. Natural coral exoskeleton as a bone graft substitute: a review // Biomed. Mater. Eng. 2002. V. 12. № 1. P.15-35.

  18. Хенч Л., Джонс Д. Биоматериалы, искусственные органы и инжиниринг тканей. М.: Техносфера. 2007.

  19. Чиссов В.И., Свиридова И.К., Сергеева Н.С. и др.Исследование invivoбиосовместимости и динамики замещения дефекта голени крыс пористыми гранулированными биокерамическими материалами // Клеточные технологии в биологии и медицине. 2008. № 3. С.151-156.

  20. Knackstedt M.A., Arns C.H., Senden T.J., Gross K. Structure and properties of clinical coralline implants measured via 3D imaging and analysis // Biomaterials. 2006. V. 27. № 13. P. 2776-2786.

  21. Wu Y.-C., Lee T.-M., Chiu K.-H. et al.A comparative study of the physical and mechanical properties of three natural corals based on the criteria for bone-tissue engineering scaffolds // J. Mater. Sci: Mater. Med. 2009. V.20. № 6. P.1273-1280.

  22. Jeger R., Lichtenfeld Y., Peretz H., et al.Visualization of ultrastructural interface of cells with the outer and inner-surface of coral skeletons // J. Electron. Microsc. (Tokyo). 2009. V. 58. № 2. P. 47-53.

  23. Ehrlich H., Etnoyer P., Litvinov S.D., et al.Biomaterial structure in deep-sea bamboo coral (Anthozoa: Gorgo­nacea: Isididae): perspectives for the development of bone implants and templates for tissue engineering // Mat.-wiss. u. Werkstofftech. 2006. V.37. P. 552-557.

  24. Braye F., Irigaray J.L., Jallot E., et al.Resorption kinetics of osseous substitute: natural coral and synthetic hydroxyapatite // Biomaterials. 1996. V.17. P.1345-1350.

  25. Fricain J.C., Roudier M., Rouais F. et al.Influence of the structure of three corals on their resorption kinetics // J. Periodontal Res. 1996. V.31. P. 463-469.

  26. Ning Y., Wei T., Defu C., et. al.The research of degradability of a novel biodegradable coralline hydroxyapatite after implanted into rabbit // J. Biomed. Mater. Res. A. 2009. V. 88. № 3. P. 1273-80

  27. Свиридова И.К., Сергеева Н.С., Франк Г.А. и др. Скелет натуральных кораллов сем. Acropora в замещении дефектов костной ткани у мелких и крупных лабораторных животных // Клеточная транс­плантология и тканевая инженерия. 2010. № 4. C. 1-6.

  28. Fadilah A., Zuki A.B., Loqman M.Y., et. al.Microscopic evaluation of the natural coral (porites spp.) post-implantation in sheep femur // Med. J. Malaysia. 2004. V. 59. Suppl. B. P. 127-128.

  29. Yuan J., Zhang W.J., Liu G., et. al.Repair of canine mandibular bone defects with bone marrow stromal cells and coral // Tissue Engineering Part A. 2010.  V. 16. № 4. P. 1385-1394.

  30. Zhukauskas R., Dodds R.A., Hartill C., et. al.Histological and radiographic evaluations of demineralized bone matrix and coralline hydroxyapatite in the rabbit tibia // J. Biomater. Appl. 2010. V. 24. № 7. P. 639-656.

  31. Hou R., Chen F., Yang Y., et al. Comparative study

    between coral-mesenchymal stem cells-rhBMP-2 composite and auto-bone-graft in rabbit critical-sized cranial defect model // J. Biomed Mater Res A. 2007. V. 80. № 1. P. 85-93.

  32. Damien E., Revell P.A. Coralline hydroxyapatite bone graft substitute: A review of experimental studies and biomedical applications // J. Appl. Biomater. Biomech. 2004. V. 2. № 2. P. 65-73.

  33. Патент№ 86455 (РФ).

  34. Беллами Л. Новые данные по ИК спектро­скопии сложных молекул. М.: 1971.

  35. Meena V.N., Devi P. N.P., Kalirajan K. Infrared spectral studies on siddha drug - pavalaparpam // International Journal of Pharma and Bio Sciences. 2010. V.1. Is. 4. P. 474-483.

  36. Бакунов В.С., Беляков А.В., Лукин Е.С., Шаяхметов У.Ш.Оксидная керамика: спекание и ползучесть. М. 2007.

  37. Mossman T.J. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxity assays // J. Immunol. Methods. 1983.  V. 65. P. 55-63.

  38. Reginster J.Y., Deroisy R., Neuprez A., et. al. Strontium ranelate: new data on fracture prevention and mechanisms of action // Curr. Osteoporos. Rep. 2009.

    V.7. № 3. P. 96-102.

  39. Dahl S.G., Allain P., Marie P.J., et. al. Incorporation and distribution of strontium in bone // Bone. 2001.  V. 28. № 4. P. 446-53.