350 rub
Journal Technologies of Living Systems №6 for 2012 г.
Article in number:
Decrease in chemically induced DNA damage in rat blood leukocytes due to the use of the «useful sun» strategy
Authors:
A.B. Gapeev, L.I. Fakhranurova, S.I. Paskevich, A.A. Manokhin, S.V. Gudkov, N.B. Simonova, M.S. Vakshtein, R.N. Khramov
Abstract:
It is known that the visible and infrared light has a protective effect to biological systems, while the UV light has negative effects. To protect against the damaging effects of UV radiation by realizing an innovative strategy "useful sun", developed special protective Light screens, which convert solar UV radiation in bio-stimulating orange-red light [Khramov et al., 2010]. In the study of biomedical effects of electromagnetic waves of optical range is an important decision on the reception of irradiation, which are considered as a visual and / or dermal reception. To check the options for the visual and dermal reception of irradiation this study was performed on two strains of Wistar rats and Campbell (model of hereditary retinal dystrophy). The aim of this work was to study changes in the level of chemically-induced DNA damage in leukocytes of whole blood of rats under the influence of the model of sunlight (without UV - components) and the conversion of sunlight with his short-wave component in the orange-red light. To remove the emission spectrum of xenon lamp infrared (IR), UV and blue components used interference filters. To obtain additional luminous orange-red component used luminescent screen with luminophore-based quantum dots KT620 (Dubna, Russia), the excitation spectrum which lies in the ultraviolet and blue light (S-UV). The wavelength of maximum fluorescence of additional luminescent component corresponded to 612.3 nm (converted sunlight - CS). To assess the level of DNA damage in rat peripheral blood leukocytes using the alkaline comet test with some modifications [Chemeris et al., 2006]. For the quantitative determination of hydrogen peroxide used a highly sensitive chemiluminescence method for enhanced luminol system - 4- iodinephenol- yodfenol- horseradish peroxidase [Chernikov et al, 2007]. Hydroxyl radicals was determined using highly specific fluorescent probe coumarin-3-carboxylic acid [Shtarkman et al, 2008]. Based on an analysis of the data, taking into account the induction of hydrogen peroxide in an aqueous system when exposed to light, we can assume that the exposure as the S-UV and CS leads to the induction of free radical processes in the animals skin that may lead to an increase DNA damage in blood leukocytes. Based on the obtained results and literature data, we hypothesized that formed by light reactive oxygen and nitrogen forms can have a regulatory effect on the blood cells similar to priming effect, preparing them to accept a stronger damaging effect [Zubanova et al., 2002]. We can assume that the action of CS reduced to an additional expression and activity of enzymes of DNA repair. After exposure to blood cell test genotoxic agent in vitro levels of DNA damage in leukocytes of the blood of rats irradiated with CS is less than in rats irradiated S-UV. We observed effects appear to be sufficiently important in terms of new opportunities and ways to protect blood cells from the damaging effects of genotoxic factors. Further detailed studies of the mechanisms underlying the action of CS on the activity of repair enzymes and antioxidant defense system.
Pages: 16-25
References
  1. Гудков С.В., Гудкова О.Ю., Штаркман И.Н., Гапеев А.Б., Чемерис Н.К., Брусков В.И. Гуанозин и инозин как природные генопротекторы для клеток крови мышей при воздействии рентгеновского излучения // Радиационная биология. Радиоэкология. 2006. Т. 46. №. 6. С. 713-718.
  2. Гудков С.В., Смирнова В.С., Брусков В.И. Образование перекиси водорода в воде при воздействии видимого света // Вода. Химия и экология. 2010. № 8. С. 40-45.
  3. Жеваго Н.А., Самойлова К.А., Глазанова Т.В., Оболенская К.Д., Баллюзек М.Ф., Романенко Н.Ю. Изменения экспрессии мембранных маркеров мононуклеаров крови человека после ее облучения invivo и invitro видимым и инфракрасным светом в терапевтических дозах // Цитология. 2003. Т. 45(2). С. 179-195.
  4. Зубанова О.И., Снопов С.А., Михельсон В.М., Самойлова К.А. Стимуляция репарации ДНК растворимыми факторами фотомодифицированной крови в клетках человека, поврежденных УФ- и ионизирующей радиацией // Цитология. 2002. Т. 44(5). С. 463-469.
  5. Храмов Р.Н., Санталова И.М., Фахранурова Л.И., Манохин А.А., Симонова Н.Б., Ржевский Д.И., Мурашев А.Н.Стратегия «Полезное солнце» повышает физическую работоспособность и вызывает адаптивные структурные перестройки в миокарде мышей // Биофизика. 2010. Т. 55. Вып. 3. С. 507-513.
  6. Черников А.В., Гудков С.В., Штаркман И.Н., Брусков В.И. Кислородный эффект при тепловых повреждениях ДНК // Биофизика. 2007. Т. 52. № 2. С. 244-251.
  7. Штаркман И.Н., Гудков С.В., Черников А.В., Брусков В.И. Образование перекиси водорода и гидроксильных радикалов в водных растворах L-аминокислот при воздействии рентгеновского излучения и тепла. // Биофизика. 2008. Т. 53(1). С. 5-13.
  8. Anathaswamy H.N., Pierceall W.E.Molecular mechanisms of ultraviolet radiation carcinogenesis // Photochem. Photobiol. 1990. 52. Р. 1119-1136.
  9. Beranek D.T.Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents // Mutat. Res. 1990. V. 231. P. 11-30.
  10. Chemeris N.K., Gapeyev A.B., Sirota N.P., Gudkova O.Yu., Tankanag A.V., Konovalov I.V., Buzoverya M.E., Suvorov V.G., Logunov V.A. Lack of direct DNA damage in human blood leukocytes and lymphocytes after in vitro exposure to high power microwave pulses // Bioelectromagnetics. 2006. V. 27(3). Р. 197-203.
  11. Cooke M.S., Evans M.D., Dizdaroglu M., Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease // FASEB J. 2003. V. 17(10). Р. 1195-214.
  12. Grzelak A., Rychlik B., Bartosz G.Light-dependent generation of reactive oxygen spe­cies in cell culture media // Free Radic. Biol. Med. 2001. V. 30(12). Р. 1418-1425.
  13. Hattori-Nakakuki Y., Nishigori C., Okamoto K., Imamura S., Hiai H., Toyokuni S. Formation
    of 8-hydroxy-2-deoxyguanosine in epidermis
    of hairless mice exposed to near-UV // Biochem. Biophys. Res. Commun. 1994. V. 201.
    Р. 1132-1139.
  14. Jones C.A., Huberman E., Cunningham M.L., Peak M.J. Mutagenesis and cytotoxicity in human epithelial cells by far- and near ultraviolet radiations: action spectra // Radiat. Res. 1987. V. 110. Р. 244-254.
  15. Jou M.J.,Jou S.B.,Chen H.M.,Lin C.H.,Peng T.I.Critical role of mitochondrial reactive oxygen species formation in visible laser irradiation induced apopto­sis in rat brain astrocytes (RBA1) // J. Biomed. Sci. 2002.
    9(6 Pt. 1). Р.507-516.
  16. Karu T.I.Mitochondrial signaling in mammalian cells activated by red and near IR radiation
    // Photochem. Photobiol. 2008. V. 84(5).
    Р. 1091-1099.
  17. Krokan H.E., Standal R., Slupphaug G.DNA glycosylases in the base excision repair of DNA // Biochem. J. 1997. V.325. P. 1-16.
  18. Loeb L.A., Preston B.D. Mutagenesis by apurinic/apyrimidinic sites // Annu. Rev. Genet. 1986. V.20. P. 201-230.
  19. Longstreth J.D., de Gruijl F.R., Kripke M.L., Takizawa Y., van der Leun J.C. Effects of increased solar ultraviolet radiation on human health // AMBIO. 1995. V. 24. Р.153-165.
  20. Moan J., Peak M.J.Effects of UV radiation on cells // J. Photochem. Photobiol. B. 1989. Oct. 4(1). Р. 21-34.
  21. Moller P., Wallin H., Holst. E., Knudsen L. Sunlight-induced DNA damage in human mononuclear cells // FASEB J. 2002. V. 16. Р. 45-53.
  22. Oshida K., Iwanaga E., Miyamoto-Kuramitsu K., Miyamoto Y. An in vivo comet assay of multiple organs (liver, kidney and bone marrow) in mice treated with methyl methanesulfonate and acetaminophen accompanied by hematology and/or blood chemistry // J. Toxicol. Sci. 2008. V. 33(5). Р. 515-24.
  23. Ostling O., Johanson K.J.Microelectrophoretic
    study of radiation-induced DNA damages in individual mammalian cells // BBRC. 1984. V. 123(1). Р.291-298.
  24. Petersen A.B., Gniadecki R., Vicanova J., Thorn T., Wulf H.C. Hydrogen peroxide is responsible for UVA-induced DNA damage measured by alkaline comet assay in HaCaT keratinocytes // J. Photochem. Photobiol. B. 2000. Dec. 59(1-3). Р. 123-31.
  25. Samoilova K.A., Zhevago N.A., Petrishchev N.N., Zimin A.A. Role of nitric oxide in the visible light-induced rapid increase of human skin microcirculation at the local and systemic levels: II. healthy volunteers // Photomed. Laser Surg. 2008. Oct; 26(5). Р. 443-449.
  26. Singh N.P., McCoy M.T., Tice R.R., Schneider E.L. A simple technique for quantification of levels of DNA damage in individual cells // Exp. Cell. Res. 1988. V. 175. Р. 184-191.
  27. Tice R.R., Agurell E., Anderson D., Burlinson B., Hartmann A., Kobayashi H., Miyamae Y., Rojas E., Ryu J.-C., Sasaki Y.F. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing // Environmental and Molecular Mutagenesis. 2000. V. 35. Р. 206-221.
  28. Tsilimigaki S.I., Messini-Nikolaki N., Kanariou M., Piperakis S.M. A study on the effects of seasonal solar radiation on exposed populations // Mutagenesis. 2003. Mar; V. 18(2). Р. 139-143.
  29. Tyrrell R.M., Keyse S.M.New trends in photobiology. The interaction of UVA radiation with cultured cells // J. Photochem. Photobiol. B. 1990. Mar. 4(4). Р. 349-361.
  30. Zhevago N.A., Samoilova K.A.Pro- and anti-inflammatory cytokine content in human peripheral blood after its transcutaneous (in vivo) and direct (in vitro) irradiation with polychromatic visible and infrared light // Photomed. Laser Surg. 2006. Apr;24(2). Р. 129-139.
  31. Zhevago N.A., Samoilova K.A., Calderhead R.G.Polychromatic light similar to the terrestrial solar spectrum without its UV component stimulates DNA synthesis in human peripheral blood lymphocytes in vivo and in vitro // Photochem. Photobiol. 2006. Sep-Oct; V. 82(5). Р.1301-1308.
  32. Zhevago N.A., Samoilova K.A., Obolenskaya K.D. The regulatory effect of polychromatic (visible and infrared) light on human humoral immunity // Photochem. Photobiol. Sci. 2004. Jan;3(1). Р.102-108.