350 rub
Journal Technologies of Living Systems №6 for 2012 г.
Article in number:
Diffusion tensor MRI in brain microstructure and connectivity investigations
Authors:
K.A. Il-yasov, A.V. Aganov, B.W. Kreher
Abstract:
The paper deals with modern developments in the field of diffusion tensor MRI in application for clinical diagnostics and neuronal pathways detection. The accent is done on the methodological aspects of the method. Brief mathematical description of self-diffusion effects in MRI and diffusion weighting factors (b-factor) are presented. Diffusion in the living systems are usually characterized with the fractional anisotropy index FA and trace of diffusion tensor, which is also called as mean diffusivity. These parameters are very sensitive to tissue microstructure changes what can be used for clinical diagnostics. Basing on the authors - experimental results the possibility diffusion tensor imaging to detect white matters pathologies is demonstrated. Diffusion tensor MRI can be used for fiber tracing. Main assumption that the direction of the eigenvector corresponding to the larges eigenvector is coincides with the direction of the fiber track gives possibility to find large fiber tracts. However such assumption fails in the regions where several tracks crossing within the voxel - in this voxel the direction of the corresponding eigenvector does not anymore represents the direction of the fibers. Consequently the common fiber tracking algorithms fail in such case. Methods to solve this problem are discussed and it is shown that this problem can be solved on the base of multi-tensor model fitting and with means of «global optimization fiber tracking method». Details of these methods are described and the experimental results are presented.
Pages: 3-16
References
  1. Warach S., Gaa J., Siewert B., Wielopolski P. et al.Acute human stroke studied by whole brain echo planar diffusion-weighted magnetic resonance imaging //Ann. Neurol. 1995. V. 37. № 2. P. 231-241.
  2. Мэнсфилд П. Быстрая магнитно-резонансная томография (перевод на русский) //Успехи физических наук. 2005. V. 175. № 10. P. 1044-1052.
  3. Ильясов К.А. Количественное измерение диффузии in vivo методом магнитно-резонансной томографии //Ученые записки КГУ. СерюФизико-математическиенауки. 2011. V. 153. P. 017-038.
  4. Reese T. G., Heid O., Weisskoff R.M., Wedeen V.J. Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo //Magn. Reson. Med. 2003. V. 49. № 1. P. 177-182.
  5. Beaulieu C. The basis of anisotropic water diffusion in the nervous system - a technical review // NMR Biomed. 2002. V. 15. № 7-8. P. 435-455.
  6. Basser P.J., Mattiello J., LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo //J. Magn. Reson. B. 1994. V. 103. № 3. P. 247-254.
  7. Basser P.J., Mattiello J., LeBihan D. MR diffusion tensor spectroscopy and imaging // Biophys. J. 1994. V. 66. № 1. P. 259-267.
  8. Hahn E.L. Spin echoes // Phys. Rev. 1950. V. 80. P. 580-594.
  9. Carr H.Y., Purcell E.M. Effects of diffusion on free precession in nuclear magnetic resonance experiments // Phys. Rev. 1954. V. 94. P. 630-638.
  10. Meiboom S., Gill D. Modified spin-echo method for measuring nuclear relaxation times // Review of Scientific Instruments. 1958. V. 29. № 8. P. 688-691.
  11. Stejskal E.O. Use of Spin Echoes in a Pulsed Magnetic-Field Gradient to Study Anisotropic, Restricted Diffusion and Flow // The Journal
    of Chemical Physics. 1965. V. 43. № 10. P. 3597-3603.
  12. Stejskal E.O., Tanner J.E. Spin Diffusion Measure­ments: Spin Echoes in the Presence of a Time­Dependent Field Gradient // The Journal of Chemical Physics. 1965. V. 42. № 1. P. 288-292.
  13. Bihan D.Le, Mangin J.F., Poupon C., Clark C.A. et al. Diffusion tensor imaging: concepts and applications //J. Magn. Reson. Imaging. 2001. V. 13. № 4. P. 534-546.
  14. Callaghan P.T., Coy A., MacGowan D., Packer K.J. et al. Diffraction-like effects in NMR diffusion studies of fluids in porous solids // Nature. 1991. V. 351. № 6326. P. 467-469.
  15. Schneider J.F., Il'yasov K.A., Hennig J., Martin E.Fast quantitative diffusion-tensor imaging of cerebral white matter from the neonatal period to adolescence // Neuroradiology. 2004. V. 46. № 4. P. 258-266.
  16. Schneider J.F., Il'yasov K.A., Boltshauser E., Hennig J. et al. Diffusion tensor imaging in cases of adrenoleukodystrophy: preliminary experience as a marker for early demyelination - // AJNR Am. J. Neuroradiol. 2003. V. 24. № 5. P. 819-824.
  17. Zamboni S.L., Loenneker T., Boltshauser E., Martin E. et al. Contribution of diffusion tensor MR imaging in detecting cerebral microstructural changes in adults with neurofibromatosis type 1 // AJNR Am. J. Neuroradiol. 2007. V. 28. № 4. P. 773-776.
  18. Rusch N., Weber M., Il'yasov K.A., Lieb K. et al. Inferior frontal white matter microstructure and patterns of psychopathology in women with borderline personality disorder and comorbid attention-deficit hyperactivity disorder // Neuroimage. 2007. V. 35. № 2. P. 738-747.
  19. Il'yasov K.A., Barta G., Kreher B.W., Bellemann M.E. et al. Importance of Exact b-Tensor Calculation for Quantitative Diffusion Tensor Imaging and Tracking of Neuronal Fiber Bundles // Applied Magnetic Resonance. 2005. V. 29. P. 107-122.
  20. Mori S., Crain B.J., Chacko V.P., van Zijl P.C. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging // Ann. Neurol. 1999. V. 45. № 2. P. 265-269.
  21. Yu C.S., Li K.C., Xuan Y., Ji X.M. et al. Diffusion tensor tractography in patients with cerebral tumors: a helpful technique for neurosurgical planning and postoperative assessment // Eur. J. Radiol. 2005. V. 56. № 2. P. 197-204.
  22. Lazar M., Alexander A.L., Thottakara P.J., Badie B. et al. White matter reorganization after surgical resection of brain tumors and vascular malformations // AJNR Am. J. Neuroradiol. 2006. V. 27. № 6. P. 1258-1271.
  23. Wakabayashi T., Fujii M., Kajita Y., Natsume A. et al. Advanced new neurosurgical procedure using integrated system of intraoperative MRI and neuronavigation with multimodal neuroradiological images // Nagoya J. Med. Sci. 2009. V. 71. № 3-4. P. 101-107.
  24. Yamada K., Ito H., Nakamura H., Kizu O. et al. Stroke patients' evolving symptoms assessed by tractography // J. Magn. Reson. Imaging. 2004. V. 20. № 6. P. 923-929.
  25. Schlaug G., Marchina S., Norton A. Evidence for plasticity in white-matter tracts of patients with chronic Broca's aphasia undergoing intense intonation-based speech therapy // Ann NY Acad. Sci. 2009. V. 1169. P. 385-394.
  26. Dubois J., Dehaene-Lambertz G., Soares C., Cointepas Y. et al. Microstructural correlates of infant functional development: example of the visual pathways // J. Neurosci. 2008. V. 28. № 8. P. 1943-1948.
  27. Escolar M.L., Poe M.D., Smith J.K., Gilmore J.H. et al. Diffusion tensor imaging detects abnormalities in the corticospinal tracts of neonates with infantile Krabbe disease // AJNR Am. J. Neuroradiol. 2009. V. 30. № 5. P. 1017-1021.
  28. Bengtsson S. L., Nagy Z., Skare S., Forsman L. et al. Extensive piano practicing has regionally specific effects on white matter development // Nat. Neurosci. 2005. V. 8. № 9. P. 1148-1150.
  29. Imfeld A., Oechslin M.S., Meyer M., Loenneker T. et al. White matter plasticity in the corticospinal tract of musicians: a diffusion tensor imaging study // Neuroimage. 2009. V. 46. № 3. P. 600-607.
  30. Rudrauf D., Mehta S., Grabowski T.J. Disconnection's renaissance takes shape: Formal incorporation in group-level lesion studies // Cortex. 2008. V. 44. № 8. P. 1084-1096.
  31. Zhang W., Olivi A., Hertig S.J., van Zijl P. et al.Automated fiber tracking of human brain white matter using diffusion tensor imaging // Neuroimage. 2008. V. 42. № 2. P. 771-777.
  32. Wakana S., Jiang H., Nagae-Poetscher L.M., van Zijl P.C. et al. Fiber tract-based atlas of human white matter anatomy // Radiology. 2004. V. 230. № 1. P. 77-87.
  33. Lazar M., Weinstein D.M., Tsuruda J.S., Hasan K. M. et al. White matter tractography using diffusion tensor deflection // Hum. Brain. Mapp. 2003. V. 18. № 4. P. 306-321.
  34. Jones D.K., Simmons A., Williams S.C., Horsfield M.A. Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI // Magn. Reson. Med. 1999. V. 42. № 1. P. 37-41.
  35. Conturo T.E., Lori N.F., Cull T.S., Akbudak E. et al. Tracking neuronal fiber pathways in the living human brain // Proc. Natl. Acad. Sci. US A. 1999. V. 96. № 18. P. 10422-10427.
  36. Koch M.A., Norris D.G., Hund-Georgiadis M. An investigation of functional and anatomical connectivity using magnetic resonance imaging // Neuroimage. 2002. V. 16. № 1. P. 241-250.
  37. Parker G.J., Haroon H.A., Wheeler-Kingshott C.A. A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements // J. Magn. Reson. Imaging. 2003. V. 18. № 2. P. 242-254.
  38. Parker G.J., Alexander D.C. Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue // Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2005. V. 360. № 1457. P. 893-902.
  39. Lin C.P., Tseng W.Y., Cheng H.C., Chen J.H. Validation of diffusion tensor magnetic resonance axonal fiber imaging with registered manganese-enhanced optic tracts // Neuroimage. 2001. V. 14. № 5. P. 1035-1047.
  40. Dyrby T.B., Sogaard L.V., Parker G.J., Alexander D.C. et al. Validation of in vitro probabilistic tractography // Neuroimage. 2007. V. 37. № 4. P. 1267-1277.
  41. Ciccarelli O., Parker G.J., Toosy A.T., Wheeler-Kingshott C.A. et al. From diffusion tractography to quantitative white matter tract measures: a reproducibility study // Neuroimage. 2003. V. 18. № 2. P. 348-359.
  42. Parker G.J., Wheeler-Kingshott C.A., Barker G.J. Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging // IEEE Trans Med Imaging. 2002. V. 21. № 5. P. 505-512.
  43. Frank L.R. Anisotropy in high angular resolution diffusion-weighted MRI // Magn. Reson. Med. 2001. V. 45. № 6. P. 935-939.
  44. Alexander D.C., Barker G.J., Arridge S.R. Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data // Magn. Reson. Med. 2002. V. 48. № 2. P. 331-340.
  45. Wedeen V.J., Hagmann P., Tseng W.Y., Reese T. G. et al. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging // Magn. Reson. Med. 2005. V. 54. № 6.
    P. 1377-1386.
  46. Jansons K.M., Alexander D.C. Persis­tent Angular Structure: new insights from diffusion MRI data. Dummy ver­sion // Inf. Process. Med. Imaging. 2003. V. 18. P. 672-683.
  47. Kreher B.W., Schneider J.F., Mader I., Martin E. et al.Multitensor approach for analysis and tracking of complex fiber configurations // Magn. Reson. Med. 2005. V. 54. № 5. P. 1216-1225.
  48. Kreher B.W., Schnell S., Mader I., Il'yasov K.A. et al. Connecting and merging fibres: pathway extraction by combining probability maps // Neuroimage. 2008. V. 43. № 1. P. 81-89.
  49. Kreher B.W., Hennig J., Il'yasov K.A. MDT Based Fiber Tracking in Complex Crossing Regions by Using a Spatial Point Process // Proc. Intl. Soc. Mag. Reson. Med. 2007. V. 15. P. 898.
  50. Green P.J. Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination // Biometrika. 1995. V. 82. № 4. P. 711-732.
  51. Stoica R., Descombes X., Zerubia J.A Gibbs point process for road extraction from remotely sensed images // Int. J. Comput. Vision. 2004. V. 57. P. 121-136.
  52. Detektion von Hirnnervenfasern auf der Basis von diffusionsgewichteten Magnetresonanzdaten. Dis... Phd in computer sciences / B. W. Kreher. Albert-Ludwigs-Universität, Freiburg im Breisgau. 2007. 165 p.
  53. Reisert M., Mader I., Anastasopoulos C., Weigel M. et al.Global fiber reconstruction becomes practical // Neuroimage. V. 54.№ 2. P. 955-962.