350 rub
Journal Technologies of Living Systems №2 for 2012 г.
Article in number:
Problem of modelling clinical situation at comparative experimental morphological assessment of the plastic osteotropic materials properties used in maxillofacial surgery
Authors:
G.P. Ter-Asaturov, M.V. Lekishvili, A.T. Bigvava, A.S. Pankrtov, K.S. Adjiev, A.Yu. Ryabov, Yu.B. Yurasova
Abstract:
Saturation of Russian market medical services with new osteotropic materials in maxillofacial surgery poses a number of issues to practitioners. Questions primarily relate to quality of the materials. To find out their needs long-term clinical and experimental studies. Choosing an adequate experimental model often allows you to save material resources and to provide objective information learned in the experiment materials. In our study have been investigated osteotropic materials of Russian producers: - Osteomatrix","CollapAn","Osteoplast-T" and "Perfoost", "Osteomatrix" is a composition of natural collagen and hydroxyapatite (HAP) in combination with synthesized sulfated glycosaminoglycans (sGAG), "CollapAn" ? a combination of synthesized HAP, scleral collagen and some antibiotics (gentamicin, lincomycin, or other), "Osteoplast-T "consists of non demineralized animal bone collagen impregnated with sGAG, "Perfoost" ? is a partially demineralized allogenic bone. As experimental animals were chosen mature males rabbits "Chinchilla", which were made external access to the branch of lower jaw under general anesthesia and created identical cylindrical bone defects. Each animal five defects were implanted with four test material, fifth, which filled with blood clot was the control. Periods of the experiment were 10, 20, 30, 60 and 90 days. Plastic materials based on collagen and natural HAP showed the most pronounced osteoinductive properties to accelerate bone regeneration in our experimental model. The results of morphological studies have shown that the greatest osteoinductive and osteoconductive properties of the used materials have "Perfoost" and "Osteomatrix" Close to these properties is "Osteoplast-T". "CollapAn" did not contribute to the faster of reparative osteogenesis of the mandible defects. The healing of bone injuries slowed down, even when compared with control, which is apparently due to the slow resorption synthetic HAP.
Pages: 41-49
References
  1. Албертс Б., Брей Д., Льюис Дж. и др. Молекулярная биология клетки. М.: Мир. 1994. С. 346 - 348.
  2. Арсеньев И.Г. Экспериментально-морфологи¬ческое обоснование клинического применения деградируемых биоимплантатов в комплексном лечении переломов и ложных суставов длинных трубчатых костей: Автореф. дисс. ... канд. мед. наук. М. 2007.
  3. Лекишвили М.В., Горбунова Е.Д., Васильев М.Г. и др. Пластика дефектов костей черепа у детей деминерализованными костными аллоимплантатами // Детская хирургия. 2004. № 5. С. 9 - 12.
  4. Панасюк А.Ф., Ларионов Е.В. Хондроитинсульфаты и их роль в обмене хондроцитов и межклеточного матрикса хрящевой ткани // Научно-практическая ревматология. 2000. № 2. С. 46 - 55.
  5. Патент № 2162331 (РФ). Способ выделения  сульфатированных гликозаминогликанов / А.Ф. Панасюк, Е.В. Ларионов, Д.А. Саващук.
  6. Хэм А., Кормак Д. Гистология. М.: Мир. 1983.
  7. Шишкова Н.В. Влияние биокомпозиционных материалов на регенерацию костной ткани при заполнении дефектов челюстных костей после удаления радикулярных кист: Автореф. дисс. - канд. мед. наук. М. 2005.
  8. Klein C., de Groot К, Chen W. et al. Osseous substance formation induced in porous calcium phosphate ceramics in soft tissues // Biomaterials. 1994. V. 15. P. 31 - 34.
  9. Urist M.R., McLean F. Ostegenetic potency and new bone formation by induction in transplants to anterior chamber of eye // J. Bone It. Surg (Am). 1952. V. 34. P. 443.
  10. Urist M.R. Bone: formation by autoinduction // Science. 1965. V. 150. P. 893 - 899.
  11. Bruijn J.D. Calcium phosphate biomaterials: bone-bonding and biodegradation properties. Leiden. 1993. 170 p.
  12. Li P., Ohtsuki C., Kokubo T. et. al. The role of hidrated silica, titania and alumina in inducing apatite on implants // J. Biomed. Mater. Res. 1994. V. 28. P. 7 - 15.
  13. Li P. In vitro and in vivo calcium phosphate induction on gel oxide. Leiden. 1993. 159 p.
  14. Yuan H., Kurashina K., de Bruijn J.D. et al. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics // Biomaterials. 1999. V. 20. P. 1799 - 1806.
  15. Kawai T., Urist M.R. Quantitative computation of induced heterotopic bone formation by an image analysis system // Clin. Orthop. 1988. № 233. P. 262 - 267.
  16. Finkemeier C.G. Current concepts review. Bone-grafting and bone-graft substitutes // J. Bone Jt Surg. (Am). 2002. V. 84. № 3. P. 454 - 464.
  17. Oikarinen J. Experimental spinal fusion with decalcified bone matrix and deep-frozen allogeneic bone in rabbits // Clin. Orthop. 1982. № 162. P. 210 - 218.
  18. Rosenthal R.K., Folkman J., Glowacki J. Demineralized bone implants for nonunion fractures, bone cysts, and fibrous lesions // Clin. Ortop. 1999. № 364. P. 61 - 69.
  19. Soto K., Urist M.R. Induced regeneration of calvaria by bone morphogenetic protein (BMP) in dogs // Clin. Orthop. 1985. № 197. P. 301 - 311.