350 rub
Journal Technologies of Living Systems №2 for 2012 г.
Article in number:
Human stromal and blood-born cells interaction under different O2 tension. Part I. Immunocupressive effects
Authors:
E.R. Andreeva, O.V. Grigorieva, I.V. Andrianova, A.N. Gornostaeva, L.B. Buravkova
Abstract:
Stromal cells of mesenchymal origin such as fibroblasts (FB) and multipotent mesenchymal stromal cells (MMSC), play an important role of physiological microenvironment in various tissue compartments, modifying some properties of other cell types. The goal of this study was to compare immunomodulatory properties of two of stromal cell types: the MMSC and human fetal FB. We also evaluated the effects of reduced oxygen tension in culture medium on the stromal/immune cells interaction outcome. Mononuclear cells (MNCs) were isolated from peripheral blood of healthy volunteers on Ficoll-Histopaque as described elsewere. MMSC from stromal-vascular fraction of human adipose tissue and human fetal fibroblasts (fFB) were cultured under 20% O2 and 5% O2. Immunophenotype of stromal cells was assessed by using antibodies against: CD13, CD29, CD34, CD44, CD45, CD54, CD90, CD105, CD106, CD117 (c-kit), HLA-ABC and vimentin. PHA-activated MNCs were cocultured with stromal cells during 72 hours and then cells carrying antigens CD3, CD19, CD16, CD56, CD25, HLA-DR were determined in MNC suspension. Comparative immunophenotype analysis revealed that MMSCs and fFB were СD90+, СD105+, HLA-ABC+, СD34-, СD45-, HLA-DR- regardless of О2 concentration. The ratio of T-cells in suspension after cocoulture with stromal cells was practically unchanged. The share of B- and ТK-cells was increased. The share of CD3+/HLA-DR+ cells was decreased while coculturing both with MMSCs and fFB. In 5% O2 this reduction was statistically significant in compare with 20% O2 (p<0,05). CD3+/CD25+ cells decreased after coculture with stromal cells in 20% O2, in 5%O2 this affect was revealed only for MMSCs coculture. Thus, it have been demonstrated that the MMSCs from the stromal-vascular fraction of human adipose tissue and human fFB have immunomodulatory potency, but the manifestation of immunosuppressive effects may vary depending on the cell type. For example, the fact that the MMSCs can inhibit the expression of early and late T-cell activation markers, and fFB - mostly late, may affect the immune response during the allogeneic stromal cells administration. In addition, the partial pressure of oxygen is an important microenvironmental factor, further modifying the result of cell-cell interactions that should be considered while developing approaches for stromal cells application for regenerative medicine needs.
Pages: 13-19
References
  1. Nauta A.J., Fibbe W.E. Immunomodulatory properties of mesenchymal stromal cells // Blood. 2007. V. 110. №. 10. P. 3499 - 3506.
  2. Jones B.J., McTaggart S.J. Immunosuppression by mesenchymal stromal cells: from culture to clinic // Exp. Hematol. 2008. V. 36. № 6. P. 733 - 741.
  3. Буравкова Л.Б., Андреева Е.Р. Взаимодействие мезенхимальных стромальных и иммунокмпетентных клеток человека // Физиология человека. 2010. Т. 36. №. 5. С. 1 - 11.
  4. Haniffa M.A., Wang X.N., Holtick U. et al. Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells // J. Immunol. 2007. V. 179. № 3. P. 1595 - 1604.
  5. Sarkhosh K., Tredget E.E., Karami A. et al. Immune cell proliferation is suppressed by the interferon-gamma-induced indoleamine 2,3-dioxygenase expression of fibroblasts populated in collagen gel (FPCG) // J. Cell Biochem. 2003. V. 90.  №. 1. P. 206 - 217.
  6. Fehrer C., Brunauer R., Laschober G. et al. Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan // Aging. Cell. 2007. V. 6. № 6. P.745 - 757.
  7. Буравкова Л.Б., Гринаковская О.С., Андреева Е.Р. и др. Характеристика мезенхимальных стромальных клеток из липоаспирата человека, культивируемых при пониженном содержании кислорода // Цитология. 2009. Т. 51. № 1. С. 5 - 11.
  8. Zuk P.A. Zhu M., Ashjian P. et al. Human adipose tissue is a source of multipotent stem cell // Mol. Biol. Cell. 2002. V. 13(12). P. 4279 - 4295.
  9. Horwitz E.M., Andreef M., Frassoni F. Mesenchymal stromal cells // Biol. Blood Marrow Transplant. 2007. V. 13(Suppl. 1). P. 53 - 57.
  10. Фриденштейн А.Я., Лурия Е.А. Клеточные основы кроветворного микроокружения. М.: Медицина. 1980. 216 с.
  11. Ishii M., Koike C., Igarashi A. et al. Molecular markers distinguish bone marrow mesenchymal stem cells from fibroblasts // J. Periodontal Res. 2007. V. 42. № 3. P. 283 - 286.
  12. Bae S., Ahn J.H., Park C.W. et al. Gene and microRNA expression signatures of human mesenchymal stromal cells in comparison to fibroblasts // Cell. Tissue Res. 2009. V. 335. № 3. P. 565 - 573.
  13. Sabatini F., Petecchia L., Tavian M. et al. Human bronchial fibroblasts exhibit a mesenchymal stem cell phenotype and multilineage differentiating potentialities // Lab. Invest. 2005. V. 85. № 8. P. 962 - 971.
  14. Filer A., Parsonage G., Smith E. et al. Differential survival of leukocyte subsets mediated by synovial, bone marrow, and skin fibroblasts // Arthritis Rheum. 2006. V. 54. № 7. P. 2096 - 2108.
  15. Dominici M., Le Blanc K., Mueller I., et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement // Cytotherapy. 2005. V. 7. P. 393 - 395.
  16. Potian J.A., Aviv H., Ponzio N.M. et al. Veto-like activity of mesenchymal stem cells: Functional discrimination between cellular responses to alloantigens and recall antigens // J. Immunol. 2003. V. 171. №. 7. P. 3426 - 3434.
  17. Harris J. Fibroblasts and their transformations: the connective-tissue cell family // In Molecular Biology of the Cell, 3rd Ed. B. Alberts, D. Bray, J. Lewis, M. Ralk, K. Roberts, and J. D. Watson, eds. Garland Publishing. New York. 1994. P. 1179 - 1193.
  18. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006. V. 126. № 663 - 676.
  19. Kundig, T.M., Bachmann M.F., DiPaolo C. et al. // Fibroblasts as efficient antigen-presenting cells in lymphoid organs. Science. 1995. V. 268. №.  1343-1347.
  20. Korn J.H. Modulation of lymphocyte mitogen responses by cocultured fibroblasts // Cell. Immunol. 1981. V. 63. P. 374 - 384.
  21. Li Pira G., Ivaldi F., Bottone L. et al. Human bone marrow stromal cells hamper specific interactions of CD4 and CD8 T lymphocytes with antigen-presenting cells // Hum. Immunol. 2006. V. 67. № 2. P. 976 - 985.
  22. Suva D., Passweg J., Arnaudeau S. et al. In vitro activated human T lymphocytes very efficiently attach to allogenic multipotent mesenchymal stromal cells and transmigrate under them // J. Cell. Physiol. 2008. V. 214. № 3. P. 588 - 594.
  23. Quaedackers M.E., Baan C.C., Weimar W., Hoogduijn M.J. Cell contact interaction between adipose-derived stromal cells and allo-activated T lymphocytes // Eur. J. Immunol. 2009. V. 39. № 12. P. 3436 - 3446.
  24. Андреева Е.Р., Горностаева А.Н., Андриа¬нова И.В. и др. Морфологическая характе¬ристика взаимодействия иммунных и мультипотентных мезенхимальных стромальных клеток in vitro // В кн.: Стволовые клетки и регенеративная медицина. М.: Изд-во Макс-пресс. 2011. С. 131-145.
  25. Sitkovsky M, Lukashev D. Regulation of immune cells by local tissue oxigen tension: HIF1alpha and adenosine receptors // Nat. Rev. Immunol. 2005. V. 5. № 9. P. 712 - 721.
  26. Roman J., Rangasamy T., Guo J. et al. T-cell activation under hypoxic conditions enhances IFN-gamma secretion // Am. J. Respir. Cell. Mol. Biol. 2010. V. 42. № 1. P. 123 - 128.
  27. Mikko M., Wahlström J., Grunewald J. et al. Hypoxia but not cigarette smoke modulates VEGF secretion from human T cells // Growth Factors. 2009. V. 27. № 6. P. 352 - 361.
  28. Гринаковская О.С., Андреева Е.Р., Буравкова Л.Б. и др. Пониженное содержание О2 замедляет коммитирование культивируемых мезенхимальных стромальных клеток-предшественников из жировой ткани в ответ на остеогенные стимулы // Бюллетень экспериментальной биологии и медицины. 2009. Т. 147. № 6. С. 704 - 707.
  29. Ma T., Grayson W.L., Frohlich M. et al. Hypoxia and stem cell-based engineering of mesenchymal tissues // Biotechnol. Prog. 2009. V. 25. №. 1. 32-42.
  30. Буравкова Л.Б., Григорьева О.В.,  Андреева Е.Р. и др. Субпопуляционный состав и активация Т-лимфоцитов при сокультивировании с МСК в среде с различным содержанием О2 // Бюллетень экспериментальной биологии и медицины. 2011. Т. 151. № 3. С. 319 - 321.