350 rub
Journal Technologies of Living Systems №8 for 2011 г.
Article in number:
The study of Subcellular Distribution of Three Types of Photosensitizers in Human Cancer Cells by Laser Scanning Microscopy
Authors:
A.A. Brilkina, L.V. Dubasova, I.V. Balalaeva, A.G. Orlova, E.A. Sergeeva, A.R. Katichev, N.M. Shakhova
Abstract:
Photodynamic therapy with implementation of photosensitizers is a recognized and perspective method of cancer treatment which allows to avoid damaging adjacent healthy tissues due to selective accumulation of photoactive agents mainly in tumor. Photoactive agents which are accumulated at perinuclear zone or in mitochondria are assumed to be the most promising for photodynamic therapy since they induce apoptotic processes in a cell. Laser scanning microscopy (LSM), one of the most informative optical techniques for imaging subcellular distribution of photosensitizer with high resolution and contrast, allows for dynamic observation of drug accumulation as well as analysis of its co-localization in specific organelles. We report on the study of accumulation dynamics and distribution of the three types of photosensitizers (Alasens-induced protoporphyrin IX, phthalocyanine Photosens and chlorine e6 derivative Fotoditazine) in bladder cancer T-24 line cells by means of laser scanning microscopy. It is demonstrated that photosensitizers with differing photochemical properties reveal different penetration and localization behavior. We found out that Alasens-induced protoporphyrin IX is partially localized in mitochondria and perinuclear region, while Photosens is mainly accumulated in lysosomes. Long-term imaging of Fotodytazine accumulation in cells demonstrated its accumulation in mitochondria and perinuclear region within the first hours followed by relocation in lysosomes after 24 hours. The revealed difference in photosensitizers distribution patterns can contribute into effective development of novel approaches in photodynamic therapy
Pages: 32-39
References
  1. Гельфонд М. Л. Фотодинамическая терапия в онкологии // Практическая онкология. 2007. Т. 8. № 4. C. 204-210.
  2. Владимиров Ю.А., Осипов А.Н., Клебанов Г.И Фотобиологические основы терапевтического применения лазерного облучения // Биохимия. 2004. Т. 69. № 1. С. 103.
  3. Красновский А.А. (мл.) Фотодинамическая регуляция биологических процессов: первичные механизмы // Проблемы регуляции в биологических системах / под общей ред. А.Б. Рубина. М.-Ижевск: НИЦ «Регулярная и хаотическая динамика». 2006. 480 с.
  4. Странадко Е.Ф., Волгин В.Н., Ламоткин И.А. Фотодинамическая терапия базально-клеточ¬ного рака кожи с фотосенсибилизатором фото¬дитазином // РБЖ. 2008. Т.7. № 4. С. 7-11.
  5. Dolmans D., Fukumura D., Jain R.K. Photodynamic therapy for cancer // Nature Reviews Cancer. 2003. V.3(5). P. 380 - 387.
  6. Nowis D., Makowski M., Stoklosa T., Legat M., Issat T., Golab J. Direct tumor damage mechanisms of pho-todynamic therapy // Acta Biochim. Polon. 2005. V. 52. P. 339 - 352.
  7. Begum G., Dube A., Joshi P.G., Gupta P.K., Joshi J N.B. Chlorin p6 preferentially localizes in endoplasmic reticulum and Golgi apparatus and inhibits Ca2+ release from intracellular store // Photochem. Photobiol. B: Biol. 2009. V. 95. I. 3. P. 177-184.
  8. Saczko J., Mazurkiewicz M., Chwiłkowska A., Kulbacka J., Kramer G, Ługowskim., Śnieturam., Bana T. Intracellular Distribution of Photofrin® in Malignant and Normal Endothelial Cell Lines // Folia Biologica. 2007. V. 53. P. 7-12.
  9. Lam M., Oleinick N L., Nieminien A.L. Photodynamic therapy-induces apoptosis in epidermoid carcinoma cells: reactive oxygen species and mitochondrial inner membrane permeabilization // J. Biol. Chem. 2001. V. 276. Р. 47379 - 47386.
  10. Соболев А.С., Резенкранц А.А., Гилязова Д.Г. Подходы к направленной внутриклеточной доставке фотосенсибилизаторов для увеличения их специфичности и придания клеточной специфичности // Биофизика. 2004. Т. 49. № 2. С. 351-379.
  11. Ouédraogo G.D., Redmond R.W. Secondary reactive oxygen species extend the range of photosensitization effects in cells: DNA damage produced via initial membrane photosensitization // Photochem. Photobiol. 2003. V. 77. Р.192-203.
  12. Ortel B., Sharlin D., O-Donnell D., Sinha A.K., Maytin E.V., Hasan T. Differentiation enhances ALA-dependet photodynamic therapy in LNCaP prostate cancer cells // Br. J. Cancer. 2002. V. 87. P.1744 - 1751.
  13. Kress M., Meier T., Steiner R., Dolp F., Erdmann R., Ortmann U., Ru¨ck A. Time-resolved microspectrofluorometry and fluorescence lifetime imaging of photosensitizers using picosecond pulsed diode lasers in laser scanning microscopes // Journal of Biomedical Optics. 2003. V. 8. № 1. Р. 26-32.
  14. Bonneaua S., Morlie`reb P., Brault D. Dynamics of interactions of photosensitizers with lipoproteins and membrane-models: correlation with cellular incorporation and subcellular distribution // Biochemical Pharmacology. 2004. V. 68. P. 1443-1452.
  15. Malham G.M., Thomsen R.J., Finlay G.L., Baguley B.C. Determination of the activation spectrum of aluminium phthalocyanine chloride against cultured meningioma cells using a tunable laser // Br. J. Neurosung. 1996. V. 10. P. 51-57
  16. Peng Q., Moan J., Nesland J.M. Correlation of subcellular and intratumoral photosensitizer localization with ultrastructural features after photodynamic therapy // Ultrastructural Pathol. 1996. V. 20. P.109 - 129.
  17. Hamblin M.R., Miller, J.L., Rizvi I., Ortel B., Maytin E.V., Hasan T. Pegylation of a Chlorine6 Polymer Conjugate Increases Tumor Targeting of Photosensitizer // Cancer Research 2001 V. 61. P.7155-7162.
  18. Liu Y., Chen P., Zhang F., Lin L., Tang G.-Q., Mu G.-G. Distribution and binding of novel photosensitizer 2-devinyl-2-(1-methoxyl-ethyl) chlorin f in human breast cancer cells MCF-7 // Laser Phys. Lett. 2009. V. 6. № 6. P. 465-471.
  19. Marchal S., Franc A., Dumas D., Guillemin F., Bezdetnaya L. Relationship between subcellular localisation of Foscans and caspase activation in photosensitised MCF-7 cells // British Journal of Cancer. 2007. V. 96. P. 944-951
  20. Pogue B.W., Ortel B., Chen N., Redmond R.W., Hasan T.A. Photobiological and photophysical-based study of phototoxicity of two chlorines // Cancer Research. 2001. V. 61, P. 717-724.
  21. Цыб А.Ф., Каплан М.А. Возможности и перспективы применения фотодинамической терапии (экспериментальные и клинические исследования) // Российские медицинские вести. 2002. № 2. С. 19 - 24.
  22. Brilkina A.A., Dubasova L.V., Balalaeva I.V., Orlova A.G., Sergeeva E.A., Katichev A.R., Shakhova N.M. Subcellular distribution of photosensitizers in human cancer cells // International Symposium «Topical Problems of Biophotonics - 2009». 19-24 July. 2009. P. 359-360.
  23. Malik Z., Dishi M., Gurini Y. Fourier Transform Multipixel Spectroscopy and Spectral Imaging of Protoporphyrin in Single Melanoma Cells // Photochem. Photobiol. 1996. V. 63. P.608 - 614.
  24. Liang H., Shin D.S., Lee Y.E., Nguyen D.C., Trang N.C., Pan A.H., Huang S.L., Chong. D.H., Berns M.W. Subcellular Phototoxicity of 5-Aminolaevulinic Acid (ALA) // Lasers. Surg. Med. 1998. V. 22. P.14-24.
  25. Kennedy J.C., Pottier R.H. Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy // J. Photochem. Photobiol. B. 1992. V. 14. P. 275 - 292.
  26. Феофанов А.В., Гришин А.И., Куделина И.А., Шитова Л.А., Кармакова Т.А., Якубовская Р.И., Эргет-Шарлье М., Вини П. Исследование локализации и молекулярных взаимодействий биологически активных соединений в живых клетках и срезах тканей на основе метода конфокальной микроспектроскопии и реконструкции спектральных изображений // Биоорганическая химия. 1999. Т. 25. № 12. С. 892-902.