350 rub
Journal Technologies of Living Systems №3 for 2011 г.
Article in number:
BINDING THE RETINOIC ACID (CRABPI) IN PATHOGENESIS OF LEUKOSIS PROMYELOCYTICA ACUTA AND OTHER NEOPLASTIC PROCESSES
Authors:
Ya. A. Kainov, I.B. Zborovskaya
Abstract:
Retinoic acid promotes differentiation of various cell types. Retinoic acid and its derivates regulate a wide range of biological processes including development, proliferation, angiogenesis and apoptosis. Genetic disorders that lead to a decrease in cell sensitivity to retinoic acid are widely distributed in various human tumors and probably functionally related to the process of carcinogenesis. CRABPI (Сellular retinoic acid binding protein I) localizes in cytoplasm and mediates cellular response to retinoic acid. Despite the fact that its intracellular function is not fully understood, most data indicates the active role of this protein in enhancing the metabolism of retinoic acid. CRABPI plays a key role in retinoid resistance formation in acute promyelocytic leukemia patients with RARα?PLZF translocation. Changes in the expression of CRABPI are detected in different human solid tumors such as lung adenocarcinoma, ovarian adenocarcinoma, esophageal adenocarcinoma, different brain tumors etc., but mechanisms of its participation in tumor progression are still unknown. This review presents the currently known data on the participation of this protein in carcinogenesis.
Pages: 48-55
References
  1. Eichele G.Retinoic acid induces a pattern of digits in anterior half wing buds that lack the zone of polarizing activity // Development. 1989. V. 107(4). P. 863-7.
  2. Eichele G. Retinoids and vertebrate limb pattern formation. Trends Genet. 1989. V. 5(8). P. 246-51.
  3. Kligman A.M.The treatment of acne with topical retinoids: one man's opinions // J. Am. Acad. Dermatol. 1997. V. 36(6 Pt 2). P. 92-95.
  4. Bogos K. Renyi-Vamos F. Kovacs G. et al. Role of retinoic receptors in lung carcinogenesis // J. Exp. Clin. Cancer. Res. 2008. V. 27. P. 18.
  5. Napoli J.L.Interactions of retinoid binding proteins and enzymes in retinoid metabolism // Biochim. Biophys. Acta. 1999. V. 22. 1440(2-3). P. 139-162.
  6. Budhu A., Gillilan R., Noy N.Localization of the RAR interaction domain of cellular retinoic acid binding protein-II // J. Mol. Biol. 2001 26. V. 305(4). P. 939-949.
  7. Ruff S.J., Ong D.E.Cellular retinoic acid binding protein is associated with mitochondria // FEBS Lett. 2000. V. 29 487(2). P. 282-286.
  8. Levadoux-Martin M., Li Y., Blackburn A., et al. Perinuclear localisation of cellular retinoic acid binding protein I mRNA // Biochem Biophys Res. Commun. 2006. V. 3;340(1). P. 326-331.
  9. Ruberte E., Friederich V., Morriss-Kay G., Chambon P. Differential distribution patterns of CRABP I and CRABP II transcripts during mouse embryogenesis // Development. 1992. V. 115(4). P. 973-987.
  10. Maltman D.J., Christie V.B., Collings J.C. et al. Proteomic profiling of the stem cell response to retinoic acid and synthetic retinoid analogues: identification of major retinoid-inducible proteins // Mol. Biosyst. 2009. V. 5(5). P. 458-471.
  11. Ross A.C. Cellular metabolism and activation of retinoids: roles of cellular retinoid-binding proteins // FASEB J. 1993. V. 1;7(2). P. 317-327.
  12. Napoli J.L., Posch K.P., Fiorella P.D., Boerman M.H. Physiological occurrence, biosynthesis and metabolism of retinoic acid: evidence for roles of cellular retinol-binding protein (CRBP) and cellular retinoic acid-binding protein (CRABP) in the pathway of retinoic acid homeostasis // Biomed. Pharmacother. 1991. V. 45(4-5). P. 131-143.
  13. Won J.Y., Nam E.C., Yoo S.J. et al.The effect of cellular retinoic acid binding protein-I expression on the CYP26-mediated catabolism of all-trans retinoic acid and cell proliferation in head and neck squamous cell carcinoma // Metabolism. 2004. V. 53(8). P. 1007-1012.
  14. Boylan J.F., Gudas L.J.The level of CRABP-I expression influences the amounts and types of all-trans-retinoic acid metabolites in F9 teratocarcinoma stem cells // J. Biol. Chem. 1992.
    V. 267(30). P. 21486-21491.
  15. Boylan J.F., Gudas L.J.Overexpression of the cellular retinoic acid binding protein-I (CRABP-I) results in a reduction in differentiation-specific gene expression in F9 teratocarcinoma cells // J. Cell. Biol. 1991. V. 112(5). P. 965-79.
  16. Chen A.C., Yu K., Lane M.A., Gudas L.J.Homozygous deletion of the CRABPI gene in AB1 embryonic stem cells results in increased CRABPII gene expression and decreased intracellular retinoic acid concentration // Arch. Biochem. Biophys. 2003. V. 411(2). P. 159-173.
  17. Tang X.H., Vivero M., Gudas L.J. Overexpression of CRABPI in suprabasal keratinocytes enhances the proliferation of epidermal basal keratinocytes in mouse skin topically treated with all-trans retinoic acid // Exp. Cell. Res. 2008. V. 314(1). P. 38-51.
  18. Dong D., Ruuska S.E., Levinthal D.J., Noy N. Distinct roles for cellular retinoic acid-binding proteins I and II in regulating signaling by retinoic acid // J. Biol. Chem. 1999. V. 274(34). P. 23695-23698.
  19. Collins C.A., Watt F.M.Dynamic regulation of retinoic acid-binding proteins in developing, adult and neoplastic skin reveals roles for beta-catenin and Notch signalling // Dev. Biol. 2008. V. 324(1). P. 55-67.
  20. Dodge R., Loomans C., Sharma A., Bonner-Weir S. Developmental pathways during in vitro progression of human islet neogenesis // Differentiation. 2009. V. 77(2). P. 135-47.
  21. Lane M.A., Xu J., Wilen E.W., et al. LIF removal increases CRABPI and CRABPII transcripts in embryonic stem cells cultured in retinol or 4-oxoretinol // Mol. Cell. Endocrinol. 2008. V. 280(1-2). P. 63-74.
  22. Bard J.B., Lam M.S., Aitken S. A bioinformatics approach for identifying candidate transcriptional regulators of mesenchyme-to-epithelium transitions in mouse embryos // Dev. Dyn. 2008. V. 237(10). P. 2748-2754.
  23. Gorry P., Lufkin T., Dierich A., et al. The cellular retinoic acid binding protein I is dispensable // Proc. Natl. Acad. Sci. USA. 1994. V. 91(19). P. 9032-9036.
  24. Perez-Castro A.V., Tran V.T., Nguyen-Huu M.C. Defective lens fiber differentiation and pancreatic tumorigenesis caused by ectopic expression of the cellular retinoic acid-binding protein // I. Development. 1993. V. 119(2). P. 363-375.
  25. Melnick A., Licht J.D.Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia // Blood. 1999. V. 93(10). P. 3167-3215.
  26. Licht J.D., Chomienne C., Goy A. et al. Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17) // Blood. 1995. V. 85(4). P. 1083-1094.
  27. Petti M.C., Fazi F., Gentile M., et al. Complete remission through blast cell differentiation in PLZF/RARalpha-positive acute promyelocytic leukemia: in vitro and in vivo studies // Blood 2000. V. 100(3). P. 1065-1067.
  28. Guidez F., Parks S., Wong H. et al.RARalpha-PLZF overcomes PLZF-mediated repression of CRABPI, contributing to retinoid resistance in t(11;17) acute promyelocytic leukemia // Proc. Natl. Acad. Sci. USA. 2007. V. 104(47). P. 18694-18699.
  29. Adamson P.C.All-Trans-Retinoic Acid Pharmacology and Its Impact on the Treatment of Acute Promyelocytic Leukemia // Oncologist. 1996. V. 1(5). P. 305-14.
  30. Geurts van K.A., de L.H., Dekker E.J., et al. Localization of the cellular retinoic acid binding protein (CRABP) gene relative to the acute promyelocytic leukemia-associated breakpoint on human chromosome 15 // Hum Genet. 1969.
    V. 87(2). P. 201-204.
  31. Pfoertner S., Goelden U., Hansen W. et al. Cellular retinoic acid binding protein I: expression and functional influence in renal cell carcinoma // Tumour. Biol. 2005. V. 26(6). P. 313-323.
  32. Hawthorn L., Stein L., Varma R. et al. TIMP1 and SERPIN-A overexpression and TFF3 and CRABPI underexpression as biomarkers for papillary thyroid carcinoma // Head Neck. 2004. V. 26(12). P. 1069-1083.
  33. Ahlquist T., Lind G.E., Costa V.L. et al. Gene methylation profiles of normal mucosa, and benign and malignant colorectal tumors identify early onset markers // Mol. Cancer. 2008. V. 7. P. 94.
  34. Lee H.S., Kim B.H., Cho N.Y. et al.Prognostic implications of and relationship between CpG island hypermethylation and repetitive DNA hypomethylation in hepatocellular carcinoma // Clin. Cancer Res. 2009. V. 15(3). P. 812-820.
  35. Tanaka K., Imoto I., Inoue J. et al.Frequent methylation-associated silencing of a candidate tumor-suppressor, CRABPI, in esophageal squamous-cell carcinoma // Oncogene. 2007. V. 26(44). P. 6456-6468.
  36. Dressler D., Sarang Z., Szondy Z. et al. Expression of retinoid-related genes in serum-free cultures of normal, immortalized and malignant human oral keratinocytes // Int. J. Oncol. 2002. V. 20(5). P. 897-903.
  37. Kosa K., Jones C.S., De Luca L.M.The H-ras oncogene interferes with retinoic acid signaling and metabolism in NIH3T3 cells // Cancer Res. 1995. V. 55(21). P. 4850-4854.
  38. Wu X., Blanck A., Norstedt G. et al.Identification of genes with higher expression in human uterine leiomyomas than in the corresponding myometrium // Mol. Hum. Reprod. 2002. V. 8(3). P. 246-254.
  39. Banz C., Ungethuem U., Kuban R.J. et al. The molecular signature of endometriosis-associated endometrioid ovarian cancer differs significantly from endometriosis-independent endometrioid ovarian cancer // Fertil. Steril. 2010. V. 94(4). P. 1212-1217.
  40. Allander S.V., Illei P.B., Chen Y. et al. Expression profiling of synovial sarcoma by cDNA microarrays: association of ERBB2, IGFBP2, and ELF3 with epithelial differentiation // Am. J. Pathol. 2002. V. 161(5). P. 1587-1595.
  41. Siddiqui N.A., Thomas E.J., Dunlop W., Redfern C.P. Retinoic acid receptors and retinoid binding proteins in endometrial adenocarcinoma: differential expression of cellular retinoid binding proteins in endometrioid tumours // Int. J. Cancer. 1995. V. 64(4). P. 253-263.
  42. Lu Y., Lemon W., Liu P.Y. et al. A gene expression signature predicts survival of patients with stage I non-small cell lung cancer. PLoS Med. 2006. V. 3(12). P. e467.
  43. Palan P.R., Romney S.L.Cellular binding proteins for vitamin A in human carcinomas and in normal tissues // Cancer Res. 1980. V. 40(11). P. 4221-4224.
  44. Mehta R.G., Kute T.E., Hopkins M., Moon R.C. Retinoic acid binding proteins and steroid receptor levels in human breast cancer // Eur. J. Cancer Clin. Oncol. 1982. V. 18(3). P. 221-226.
  45. Moon R.C., Mehta R.G.Retinoid bind­ing in normal and neoplastic mam­mary tissue // Adv. Exp. Med. Biol. 1981. V. 138. P. 231-249.
  46. Kohl F.V. Relationship between cellular retinoic acid-binding protein and histology of human lung tumors // J. Cancer Res. Clin. Oncol. 1984. V. 108(3). P. 357 - 361.
  47. Brandes M., Gesell M.S., Ueda H. et al. Retinoic acid binding protein in human and experimental pancreatic carcinomas in hamsters // Ann. Clin. Lab. Sci. 1983. V. 13(5). P. 400-406.
  48. Gesell M.S., Brandes M.J., Arnold E.A. et al. Retinoic acid binding protein in normal and neopolastic rat prostate // Prostate. 1982. V. 3(2). P. 131-8.
  49. Rattanapanone V., Tashiro S., Tokuda H. et al. Cellular retinoic acid-binding protein in virus-induced Shope papillomas of rabbit skin // Cancer Res. 1981. V. 41(4). P. 1483-1487.