350 rub
Journal Technologies of Living Systems №3 for 2011 г.
Article in number:
NEW DIRECT LOW MOLECULAR WEIGHT SYNTHETIC THROMBIN INHIBITORS
Authors:
E.I. Sinauridze, A.N. Romanov, O.A. Kondakova, I.V. Gribkova, S.S. Surov, A.S. Gorbatenko, Y.V. Kuznetsov, A.A. Bogolyubov, V.B. Sulimov, F.I. Ataullakhanov
Abstract:
Search of new thrombin inhibitors is very important objective for amelioration of antithrombotic therapy. Necessity of a fast decrease of preformed thrombin activity goes on the foreground in acute situations. It is quite reasonable to use in this case an intravenous administration of direct thrombin inhibitors to block hypercoagulation development as soon as possible. Our aim was to design new thrombin inhibitors for intravenous administration. The intravenous inhibitors get directly to blood plasma, where thrombin works. Thus the bioavailability was not an issue and we were not restricted to ligands with low basicity of P1 fragments. The selection of the effective ligands for inhibition of the target enzyme is usually very laborious, long, and expensive process. Computer-aided screening using well adjusted docking program is able to shorten this stage of the study. Such a program allows calculate the free binding energy for organic ligand and active site of target protein. We used docking program SOL developed by Research Computer Center of Moscow State University and "Dimonta" Ltd. (Moscow). The scoring functions (ΔGbinding) for compounds from National Cancer Institute (NCI, USA) and Institute of Organic Chemistry RAS (IOC, Russia) data bases were calculated on the first step of this study. After that antithrombin activities were measured experimentally for the more promising compounds. So, on the first step of this work we have executed adjustment of our program SOL for thrombin inhibitor search. At that we also discovered that some compounds with isothiuro-nium group in P1 position of the ligand were sufficiently effective thrombin inhibitors. On the next stage of the study after analysis of all results obtained we generated large virtual libraries of the ligands - possible thrombin inhibitors, taking into account all discovered patterns. Overall number of compounds, studied in virtual screening experiments, was near 6000. As a result new chemical structures were proposed as thrombin inhibitors. These structures contained traditional orcin and benzenesulfonic acid residues as P2 and P3 fragments, respectively, but new fragments in P1 position of a molecule. The calcula-tions have shown that introduction of 4- aminopyridinium (4-AP), isothiuronium (IT), or 2-aminothiazolinium (2-AT) group in P1 moiety of the compound gave rise to the high inhibitory activity. According to the calculations the inhibitory effectiveness should be better also when length of the linker between P1 and P2 fragments of inhibitor molecule decreases from 5 to 1 CH2 group. Some of aforementioned new compounds were synthesized and tested for antithrombin activity in buffer system in vitro. As a result several compounds of IT and especially of 4-AP series turned out to be the most active orcin-based thrombin inhibitors (and ones of the most active low molecular weight direct thrombin in-hibitors at all) with Ki in subnanomolar range. The obtained results show that our docking approach, augmented by experimental screening of antithrombin activity, is strategy powerful enough to find new inhibitor motifs and to improve the potency of inhibitors. The new effective thrombin inhibitors were developed. These inhibitors are very promising, but further detailed studies are necessary to confirm the possibility of medical application of these new inhibi-tors. This study was executed in frame of Basic Investigation Program of Presidium of Russian Academy of Sciences "Basic Research to Medicine", and was supported in part by grants from Russian Foundation for Basic Research (RFBR) 09-04-00357-a and 10-07-00595-a.
Pages: 34-47
References
  1. Пантелеев М.А., Атауллаханов Ф.И. Свертывание крови: биохимические основы // Клиническая онкогематология. 2008. Т. 1. № 1.
    С. 50-62.
  2. Steinmetzer T., Hauptmann J., Stürzebecher J. Advances in the development of thrombin inhibitors // Exp. Opin. Invest. Drugs. 2001. V. 10.
    № 5. P. 845-864.
  3. КолодзейскаяМ.В., СоколовскаяЛ.И., ЧернышенкоВ.А., ЛуговскойЭ.В.Тромбиниантикоагулянтнаятерапия// Украинскийбиохимическийжурнал. 2009. Т. 81. № 2. С. 5-13.
  4. Hirsh J. Heparin. // N. Engl. J. Med. 1991.
    V. 324. №22. P. 1565-1574.
  5. Hirsh J., Warkentin T.E., Raschke R. et al. Heparin and low-molecular-weith heparin. Mechanisms of action, pharmacokinetics, dosing considerations, monitoring, efficacy and safety // Chest. 1998. V. 114. № 5. P. 489S-510S.
  6. Lindahl U., Hook M. Glycosaminoglycans and their binding to biological macromolecules // Annu. Rev. Biochem. 1978. V. 47. P. 385-417.
  7. Shafer J.A.Cardiovascular chemotherapy: anticoagulants // Curr. Opin. Chem. Biol. 1998.
    V. 2. № 4. P. 458-465.
  8. De Prost D. Heparin fractions and analogues: a new therapeutic possibility for thrombosis // Trends Pharmacol. Sci. 1986. V. 7. P. 496-500.
  9. Boneu B.Low molecular weight heparins: are they superior to unfractionated heparins to  prevent and to treat deep vein thrombosis - // Thromb. Res. 2000. V. 100. № 2. P. V113-V120.
  10. Bourin M.-C., Lindahl U. Glycosaminoglycans and the regulation of blood coagulation // Biochem. J. 1993. V. 289. № 2. P. 313-330.
  11. Greinacher A. Heparin-induced thrombocytopenia // J. Thromb. Haemost. 2009. V. 7. № 1.
    P. 9-12
  12. Warkentin T.E., Levine M.N., Hirsh J. et al. Heparin-indused thrombocytopenia in patients treated with low-molecular-weith heparins or unfractionated heparin // N. Engl. J. Med. 1995. V. 332. № 20. P. 1330-1335.
  13. Warkentin T.E., Chong B.H., Greinacher A. Heparin-induced thrombocytopenia: towards consensus // Thromb. Haemost. 1998. V. 79. № 1.
    P. 1-7.
  14. Theroux P., Waters D., Lam J., Juneau M., McCans J. Reactivation of unstable angina after the discontinuation of heparin // N. Engl. J. Med. 1992. V. 327. № 3. P. 141-145.
  15. Hirsh J. Low-molecular-weight heparin: a review of the results of recent studies of the treatment of venous thromboembolism and unstable angina // Circulation. 1998. V. 98. № 15. P. 1575-1582.
  16. Olson S.T., Bjork I. Regulation of thrombin by antithrombin and heparin cofactor II. In: «Тhrombin: Structure and Function» // Berliner L.J. editor. N.Y. Plenum Press. 1992. P. 159-217.
  17. Rosenberg R.D. The heparin-antithrombin system: a natural anticoalulant mechanism, In: - Hemostasis and Thrombosis: Basic Principles and Clinical Practice?, Colman R.W., Hirsh J., Marder V.J., Salzman E.W., editors.2ndЕdition //Philadelphia: JB Lippincott. 1987.
    P. 1373-1392.
  18. Young E., Podor J., Vemer T., Hirsh J. Induction of the acute-phase reaction increases heparin-binding proteins in plasma // Arterioscler. Thromb. Vasc. Biol. 1997. V. 17. № 8.
    P. 1568-1574.
  19. Melandri G., Semprini F., Cervi V. et al.Comparision of efficacy of low molecular weight heparin  (Parnaparin) with that of unfractionated heparin in the presence of activated platelets in healthy subjects // Am. J. Cardiol. 1993. V. 72. № 5.
    P. 450-454.
  20. Catella-Lawson F. Direct thrombin inhibitors in cardiovascular disease // Coron. Artery Dis. 1997. V. 8. № 2. P. 105-111.
  21. Griffith G.C., Nichols G. Jr., Asher J.D., Flanagan B. Heparin osteoporosis // JAMA. 1965. V. 193. № 2. P. 91-94.
  22. Tadros R., Shakib S.Warfarin - indications, risks and drug interactions // Aust. Fam. Physician. 2010. V 39. № 6. P. 476-9.
  23. Steward D.J., Haining R.L., Henne K.R. et al. Genetic association between sensitivity to warfarin and expression of CYP2C9*3 // Pharmacogenetics. 1997. V. 7. № 5. P.361-367.
  24. Nisio M.Di., Middeldorp S.,Buller H.R. (2005) Direct thrombin inhibitors // N. Engl. J. Med.
    V. 353. № 10. P. 1028-1040.
  25. Edmunds J.J., Rapundalo S.T., Siddiqui M.A. Thrombin and factor Xa inhibition // Annu Rep. Med. Chem. 1996. V. 31. P. 51-60.
  26. Wiley M.R., Fisher M.J.Small molecule direct thrombin inhibitors // Expert Opin. Ther. Pat. 1997. V. 7. № 11. P. 1265-1282.
  27. Hauptmann J., Stürzebecher J.Synthetic inhibitors of thrombin and factor Xa: from bench to bedside // Thromb. Res. 1999. V. 93. № 5.
    P. 203-241.
  28. Vacca J.P. New advances in the discovery of thrombin and factor Xa inhibitors // Curr. Opin. Chem. Biol. 2000. V. 4. № 4. P. 394-400.
  29. Schwarz R.P. The preclinical and clinical pharmacology of Novastan (Argatroban). In: "New Anticoagulants for the Cardiovascular Patient?, Pifarre R. editor // Hanley and Belfus. Inc. Philadelphia. PA. US. 1997. P. 231-249.
  30. Okamoto S., Hijikata A., Kikumoto R. et al. Potent inhibition of thrombin by the newly synthesized arginine derivative No.805. The importance of stereo-structure of its hydrophobic carboxamide portion // Biochem. Biophys. Res. Commun. 1981. V. 101. № 2. P. 440-446.
  31. Stangier J., Rathgen K., Stähle H. et al. The pharmacokinetics, pharmacodynamics and tolerability of dabigatran etexilate, a new oral direct thrombin inhibitor, in healthy male subjects // Br. J. Clin. Pharmacol. 2007. V. 64. № 3.
    P. 292-303.
  32. Berman H.M., Westbrook J., Feng Z. et al.The Protein Data Bank //Nucleic Acids Res. 2000. V. 28. Pt. 6. № 1. P. 235-242.
  33. Kitchen D.B,. Decornez H., Furr, J.R., Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications // Nat. Rev. Drug Discov. 2004. V. 3. № 11 P. 935-949.
  34. Романов А.Н., Кондакова O.A., Григорьев Ф.В., Сулимов А.В., Лущекина С.В., Мартынов Я.Б., Сулимов В.Б..Компьютерный дизайн лекарственных средств: программа докинга SOL // Вычислительные методы и программирование. 2008. Т. 9. С. 64-84. Доступно на сайтах: http://num-meth.srcc.msu.ru/english/zhurnal/tom_2008/v9r126.html; http://www.keenbase.ru/ file/v9r126.pdf.
  35. Сулимов В.Б., Романов А.Н., Григорьев Ф.В., Кондакова О.А., Сулимов А.В., Жабин С.Н., Соболев С.И. Веб-ориентированная система молекулярного моделирования Keenbase для разработки новых лекарств // Тезисы докладов
    Всеросс. науч. конф. «Научный сервис в сети Интернет: технологии параллельного программирования». 18-23 сентября 2006 г. Новороссийск. С. 170-172.
  36. Sulimov V., Romanov A., Grigoriev F., Kondako­va O., Sulimov A., Bryzgalov P., Zhabin S., Chernobrovkin A., Sobolev S. Web-oriented system Keenbase for virtual screening and design of new ligands for biological macromolecules // Application for new drug searches. Abstracts of «Saint-Petersburg International Workshop on NanoBiotechnologies». 27 -29 November 2006. Saint-Petersburg. Russia. P. 33-34.
  37. Sulimov A.V., Sulimov V.B., Romanov A.N., Grigoriev, F.V., Kondakova O.A., Bryzgalov P.A., Ostapenko D.A.Web-oriented system Keenbase for new drugs design // Proc. Fourth International Symposium «Computational Methods in Toxicology and Pharmacology Integrating Internet Resourses» (CMPTI-2007). Moscow. Russia. September 1-5. 2007. P. 158.
  38. Доступно на сайте: http://www.keenbase.ru
  39. Halgren T.A. Merck Molecular Force Field
    // J. Comput. Chem. 1996. V. 17. № 2.
    P. 490-586, 616-641.
  40. Ghosh A., Rapp C.S., Friesner R.A.Generalized Born model based on a surface integral formulation // J. Phys. Chem. Sect. B. 1998. V. 102.
    № 52. P. 10983-10990.
  41. Romanov A.N., Jabin S.N., Martynov Y.B., Sulimov A.V., Grigoriev F.V., et al.Surface generalized Born method: a simple, fast and precise implicit solvent model beyond the Coulomb approximation //J. Phys. Chem. 2004. Sect. A.
    V. 108. P. 9323-9327.
  42. National Cancer Institute. The Open Chemical Repository Collection. Diversity Set: Доступнонасайте: http://www.dtp.nci.nih.gov/docs/ 3d_database/Structural_information/structural_data.html.
  43. Gasteiger J., Rudolph C., Sadowski J.Automatic generation of 3D-atomic coordinates for organic molecules // Tetrahedron Computer Methodology. 1990. V. 3. № 6С P. 537-547.
  44. International Patent Application PCT/RU2008 /000400. New compounds with antithrombin function and pharmaceutical compositions based on them. / Sinauridze E.I., Ataullakhanov F.I., Butylin A.A., Sulimov V.B., Romanov A.N., et al.27.06.2008 (priority 28.06.2007). Applicant: Bionika, Moscow, Russia.
  45. Sonder S.A., Fenton J.W. 2nd.Thrombin specificity with tripeptide chromogenic substrates: comparison of human and bovine thrombins with and without fibrinogen clotting activities // Clin. Chem. 1986. V. 32. № 6. P. 934-937.
  46. Banner D.W.Principles of enzyme-inhibitor designin protein-ligand interactions from molecular recognition to drug design. In: - Methods and principles in medicinal chemistry?. Bohm H.-J.; Schneider G., Ed. Wiley-VCH GmbH.: Dusseldorf. 2003. V. 19. P. 163-185.
  47. Tomczuk B., Lu T., Soll R.M., Fedde C., Wang A., et al.Oxyguanidines: application to non-peptidic phenyl-based thrombin inhibitors // Bioorg.
    Med. Chem. Lett. 2003. V. 13.
    P. 1495-1498.
  48. Lu T., Tomczuk B., Illig C., Bone R., Murphy L., et al.In vitro evaluation and crystallographic analysis of a new class of selective, non-amide-based thrombin inhibitors // Bioorg. Med. Chem. Lett. 1998. V. 8. № 13. P. 1595-1600.
  49. Matsuo T. Argatroban. Antithrombotic Therapy in Clinical Practice // Kobe Research Projects on Thrombosis and Haemostasis. Japan. 2007. P. 1.