350 rub
Journal Technologies of Living Systems №2 for 2011 г.
Article in number:
HETEROGENEOUS RECOMBINATION IN THE PLASMA OF WATER VAPOR - AS A MECHANIS EFFECTS ON BIOLOGICAL TISSUE
Authors:
N.V. Baburin, S.W. Belov, J.K. Danileyko, A.M. Egorov, T.Р. Lebedeva, S.M. Nefedov, V.V. Osiko, V.A. Salyuk
Abstract:
The paper presents the results of a study of the dissection of biological tissue with a needle electrode using plasma glow discharge excited by high frequency current. As a model facility for the study of plasma interaction with biological objects using saline solution, forming electrolyte electrode. Excitation of the plasma were high-frequency current with a frequency of 2.64 MHz to needle electrodes immersed in a volume of electrolyte. Study the dynamics of the fall of the current flowing through the metal electrode at the front of the pulse showed that during boiling of the electrolyte at the electrode tip due to overheating instability has a value of (3÷4) × 10-5 sec, while boiling front propagation velocity on the electrode surface is approximately (1÷2) × 102 m∙c?1. The appearance of the plasma is accompanied by a significant decrease in current flowing through the electrode, the value of (4÷5) A to (0,4÷0,5) A and a strong reduction in the potential near the «hot» electrode (outside the plasma). The resulting estimates of plasma parameters and characteristics of energy deposition show that the energy of charge carriers in the plasma goes to the dissociation of water vapor and less is spent on his direct heat. Go dissociation energy into heat associated with the surface energy sources, due to the heterogeneous recombination of the incoming plasma ions, the active atoms and molecules. These sources are localized exclusively at the interfaces plasma - metal electrode and the plasma - electrolytic electrode. Power sources is determined by the current flowing through the plasma, and does not depend on its temperature. Thus, the key moment when using glow discharge plasma in water vapor, is the flux of ions and their subsequent heterogeneous recombination on the surface. This mode of exposure is close to the parameters of energy to the regime of laser ablation effects.
Pages: 50-55
References
  1. Ремизов А.Н. Медицинская и биологическая физика. М.: Высшая школа. 1996.
  2. Долецкий С.Я., Драбкин Р.П., Ленюшкин А.И. Высокочастотная электрохирургия. М.: Медицина. 1980. 198 с.
  3. Voyles S.R., Tucker R.D. Essentials of Monopolar Electrosurgery. Electrosurgical Concepts. USA. 1992.
  4. Дмитриев Е.Г., Фёдоров И.В. Применение монополярной электрохирургии в лапароскопии // Казань. 1994. 56 с.
  5. Arya A., Donne A.J., Nigam A. Double-blind randomized controlled study of coblation tonsillotomy versus coblation tonsillectomy on postoperative pain // Clin. Otolaryngol. 2003. V. 28(6). P. 503-506.
  6. Cherrington B.E.Gaseous Electronics and Gas
    Laserю. N.Y. Oxford. PergamonPress. 1982.
  7. Таблицы спектральныхлиний атомов и ионов // Справочник. М.: Энергоатомиздат.1982.
  8. Храпак А.Г., Якубов И.Т. Электроны в плотных газах и плазме. М.: Наука. 1981.
  9. Поляков О.В. Плотность тока и перенос заряда на межфазной границе тлеющий разряд - электролитный катод // Конденсированные среды и межфазные границы. 2003. Т. 5. № 1. С. 102-105.
  10. Фетисов И.С., Наседкин А.Н., Грачев С.В., Шехтер А.Б., Данилейко Ю.К., Нефёдов С.М., Селин Е.В.Сравнительная оценка воздействия на биологические ткани эрбиевого лазера на стекле «Глассер» и радиоволнового электрохирургического аппарата «КиК-медимастер» // Лазерная медицина. 2006. Т. 10. Вып. 1. С. 35-38.