350 rub
Journal Technologies of Living Systems №1 for 2011 г.
Article in number:
DYNAMICS OF COMPENSATORY MECHANISMS AT EARLY STAGES OF FLUORINE INTOXICATIONS
Authors:
A.G. Zhukova, E.V. Ulanova, D.A. Shcherbakova, T.K. Yadykina
Abstract:
Long exposure to high fluorine concentrations on rats was accompanied by different directed change in the level of stressor blood hormones - ACTH, cortisol, and adrenaline. The similar hormonal response was directed to the onset of compensatory mechanisms and activation of metabolic cell processes: ALAT, AAT, AlP, CPK activity changed. So ALAT and AlP passed through two waves of activation - in 3 weeks of fluoric intoxication they exceeded the control level by 24 % and 13 %, in 6 weeks they decreased, and in 9 weeks new increase was registered (by 41 % and 21 % accordingly). Only in 3 weeks of fluoric intoxication CPK activity increased by 53 %. On the 12-th week of fluoric intoxication ALAT, AlP, CPK activity didn-t reliably differ from the control values. Increase in the activity of these enzymes promoted functioning glucose-alanine shunt and it was directed to involving of phosphates into bioenergy processes and stimulation of oxidative phosphorylation in mitochondrions. Besides increase in CPK activity also testified development of stress-reaction which proceeded with ATP expenditure. AAT activity decreased progressively from the 3-rd week till the 6-th one and it raised on the 9-th and 12-th weeks of fluoric priming that evidenced activation of Krebs cycle. Correlation interrelations between the change of hormone level and enzyme activity in blood of experimental rats were revealed. We observed positive correlation connection between ACTH and ALAT, ACTH and AlP levels (r = 0,873; p  0,001), between cortisol and AAT levels (r = 0,869; p  0,001). Negative correlation connection between adrenaline and AAT levels (r = -0,87; p  0,001), between adrenaline and ALAT levels (r = -0,8; p  0,01) was detected. Thus long exposure to fluorine is the stressor for an organism and is accompanied by activation of compensatory and adaptive mechanisms which promote maintenance of basic homeostatic blood indices at the physiological level. There is change in the activity of bioenergy systems both at tissue level and at organ one. At early stages of fluoric intoxication (1-3 weeks) gluconeogenesis and glucose transport intensify due to its dephosphorylation, oxidative phosphorylation in mitochondrions and synthesis of the proteins participating in these processes are activated. When increasing terms of priming with fluorine (6-9 weeks) compensatory response becomes prolonged in time and proceeds on other metabolic ways: glycolysis and Krebs cycle are activated. Chronic exposure to high fluorine concentrations (the 12-th week of fluoric priming) exhausts compensatory and adaptive mechanisms, as a result fluorosis develops, and as a whole it can be characterized as impossibility of metabolic balance.
Pages: 10-17
References
  1. Акмаев И.Г. Физиология регуляторных систем и дизрегуляторная патология // В кн.: Дизрегуляционная патология / под ред. Г.Н. Крыжановского. М.: Медицина. 2002. С. 79-96.
  2. Виру А.А. Гормональные механизмы адаптации и тренировки. М.: Наука. 1981. 155 с.
  3. Гаврилюк Л.А., Степко Е.А., Спиней Ю.Г., Вартичан А.И., Лысый Л.Т.Влияние антиоксидантной терапии на активность глутатионзависимых энзимов слюны пациентов с флюорозом // Клиническая лабораторная диагностика. 2007. № 1. С. 22-37.
  4. Калетина Н.И. Токсикологическая химия. Метаболизм и анализ токсикантов. М.: ГЭОТАР-Медиа, Мир. 2000. С. 907-911.
  5. Конык У.В., Гжегоцкий М.Р., Коваленко Е.А., Козак Л.П., Терлецкая О.И., Ковальчук С.Н., Панина Л.В., Ковалишин В.И. Особености кислородзависимого метаболизма у животных с хронической фтористой интоксикацией в условиях гипокситерапии // Hyp. Med. J. 2001. V. 9. № 1-2. P. 6-8.
  6. Оськина И.Н., Гербек Ю.Э., Шихевич С.Г., Плюснина И.З., Гулевич Р.Г. Изменения гипоталамо-гипофизарно-надпочечниковой и иммунной систем при отборе животных на доместикационное поведение // Вестник ВОГиС. 2008. Т. 12. № 1/2. С. 39-49.
  7. Пальчикова Н.А., Кузьминова О.И., Шергин С.М.,Селятицкая В.Г. Сравнительный анализ содержания тиреоидных гормонов в крови и щитовидной железе экспериментальных животных при действии на организм факторов разной природы // Компенсаторно-приспособи­тельные процессы: фундаментальные, экологические и клинические аспекты / под ред. член-корр. РАМН, д. м. н., проф. В.А.Шкурупия. Новосибирск. 2004. С. 149-150.
  8. Плахотник В.Н. Фториды вокруг нас // Соросовский образовательный журнал. 1998. № 2. С. 95-100.
  9. Пшенникова М.Г. Феномен стресса. Эмоциональный стресс и его роль в патологии // В кн.: Актуальные проблемы патофизиологии. М.: Медицина. 2001. С. 227-228.
  10. Разумов В.В. Флюороз как проявление преждевременного старения и атавистического остеогенеза. Новокузнецк. 2003. 120 с.
  11. Скальный А.В. Химические элементы в физиологии и экологии человека. М.: ОНИКС 21 век: Мир. 2004. 216 с.
  12. Токарь В.И., Жаворонков А.А., Щербаков С.В. Фтор и эндокринная система. Новосибирск: Наука. 1991. 194 с.
  13. Учакин П.Н., Учакина О.Н. Тобин Б.В., Ершов Ф.И. Нейроэндокринная регуляция иммунитета // Вестник РАМН. 2007. № 9. С. 26-31.
  14. Шалина Т.И., Васильева Л.С. Общие вопросы токсического действия фтора // Сибирский медицинский журнал. 2009. № 5. С. 5-9.
  15. Adamek E., Pawіowska-Gуral K., Bober K. In vitro and in vivo effects of fluoride ions on enzyme activity // Ann. Acad. Med. Stetin. 2005.
    V. 51 (2). P. 69-85.Chouhan S., Lomash V., Flora S.J.S. Fluoride-induced changes in haem biosynthesis pathway, neurological variables and tissue histopathology of rats // J. Appl. Toxicol. 2010. V. 30. P. 63-73.
  16. Dabrowska E., Balunowska M., Letko R. Histoenzymatic study of the liver and submandibular gland of rats exposed to sodium fluoride in drinking water // Ann. Acad. Med. Stetin. 2006. V. 52(1). P. 9-15.
  17. DenBesten P.K., Yan Y., Featherstone J.D., Hilton J.F., Smith C.E., Li W. Effects of fluoride on rat dental enamel matrix proteinases // Arch. Oral. Biol. 2002. V. 47(11). P. 763-770.
  18. Eskandari F., Webster J.I., Sternberg E.M. Neural immune pathways and their connection to inflammatory diseases // Arthritis Res. Ther. 2003. V. 5. P. 251-265.
  19. Fleshner M., Deak T., Nguyen K.T. et al. Endogenous glucocorticoids play a positive regulatory role in the anti-keyhole limpet hemocyanin in vivo antibody response // J. Immunol. 2001. V. 166. P. 3813-3819.
  20. Khandare A.L., Suresh P., Kumar P.U., Lakshmaiah N., Manjula N., Rao G.S. Beneficial effect of copper supplementation on deposition of fluoride in bone in fluoride- and molybdenum-fed rabbits // Calcif. Tissue Int. 2005. V. 77 (4). P. 233-238.
  21. Koroglu B.K., Ersoy I.H., Koroglu M., Balkarli A., Ersoy S., Varol S., Tamer M.N. Serum Parathyroid Hormone Levels in Chronic Endemic Fluorosis // Biol. Trace Elem. Res. 2010.
  22. Leea J.-H., Junga J.-Y., Jeonga Y.-J., Parka J.-H., Yanga K.-H., Choia N.-K., Kima S.-H., Kim W.-J. Involvement of both mitochondrial- and death receptor-dependent apoptotic pathways regulated by Bcl-2 family in sodium fluoride-induced apoptosis of the human gingival fibroblasts // Toxicology. 2008. V. 243 (3). P. 340-347.
  23. Lu J., Xu Q., Zheng J., Liu H., Li J., Chen K. Comparative proteomics analysis of cardiac muscle samples from pufferfish Takifugu rubripes exposed to excessive fluoride: initial molecular response to fluorosis // Toxicol. Mech. Methods. 2009. V. 19 (6-7). P. 468-75.
  24. Merciris D., Schiltz C., Legoupil N., Marty-Morieux C., de Vernejoul M.C., Geoffroy V.Over-expression of TIMP-1 in osteoblasts increases the anabolic response to PTH // Bone. 2007. V. 40 (1). P. 75-83.
  25. Moncek F., Kvetnansky R., Jezova D. Differential responses to stress stimuli of Lewis and Fischer rats at the pituitary and adrenocortical level // Endocr. Regul. 2001. V. 35. P. 35-41.
  26. Myers K.A., Rattner J.B., Shrive N.G., Hart D.A. Osteoblast-like cells and fluid flow: cytoskeleton-dependent shear sensitivity // Biochem. Biophys. Res. Commun. 2007. V. 364 (2). P. 214-219.
  27. Otsuki S., Morshed S.R., Chowdhury S.A., Takayama F., Satoh T., Hashimoto K., Sugiyama K., Amano O,. Yasui T., Yokote Y., Akahane K., Sakagami H. Possible link between glycolysis and apoptosis induced by sodium fluoride // J. Dent. Res. 2005. V. 84 (10). Р. 19-23.
  28. Rać M.E., Safranow K., Doіegowska B., Machoy Z. Guanine and inosine nucleotides, nucleosides and oxypurines in snail muscles as potential biomarkers of fluoride toxicity // Folia Biol. (Krakow). 2007. V. 55 (3-4).P. 153-160.
  29. Refsnes M., Becher R., Lâg M., Skuland T., Schwarze P.E. Fluoride-induced interleukin-6 and interleukin-8 synthesis in human epithelial lung cells // Hum. Exp. Toxicol. 1999. V. 18 (11). P. 645-52.
  30. Shanks N., Kusnecov A.W. Differential immune reactivity to stress in BALB/cByJ and C57BL/6J mice: in vivo dependence on macrophages // Physiol. Behav. 1998. V. 65. P. 95-103.
  31. Thrane E.V., Refsnes M., Thoresen G.H., Låg M., Schwarze P.E. Fluoride-induced apoptosis in epithelial lung cells involves activation of MAP kinases p38 and possibly JNK // Toxicol. Sci. 2001. V. 61 (1). P. 83-91.
  32. Vitkovic L., Bockaert J., Jackue C. "Inflammatory" cytokines: neuromodulators in normal brain - // m. 2000. V. 74 (2). P. 457-464.
  33. Wang H., Yang Z., Zhou B., Gao H., Yan X., Wang J. Fluoride-induced thyroid dysfunction in rats: roles of dietary protein and calcium level // Toxicol. Ind. Health. 2009. V. 25 (1). P. 49-57.
  34. Xu H., Hu L.S., Chang M., Jing L., Zhang X.Y., Li G.S. Proteomic analysis of kidney in fluoride-treated rat // Toxicol. Lett. 2005. V. 160 (1). Р. 69-75.
  35. Xu H., Jing L., Li G.S. Proteomic analysis of osteoblasts exposed to fluoride in vitro // Biol. Trace Elem. J. NeurocheRes. 2008. V. 123 (1-3). P. 91-97.