350 rub
Journal Technologies of Living Systems №8 for 2010 г.
Article in number:
Diagnostics of social-significant diseases by revealing of thermal local space-temporal peculiarities on human body
Authors:
G.R. Ivanitskii, A.A. Deev, E.P. Khizhnyak, L.N. Khizhnyak
Abstract:
The method of thermography is promising opportunity for evaluating the surface temperature of living organisms. The sensitivity of modern infrared (IR) cameras based on the indium antimonide photodetector matrix is limited by the temperature noise equivalent and characterized by value of about 0.02 °C. Sensor matrix of cameras has sizes 640×512 elements. These cameras provide an opportunity to develop fundamentally new methods of medical diagnosis and monitoring of treat-ment efficacy. A thermal imager detects the temperature distribution over the skin surface. Blood vessels are deep in body tissues, often below the fat-tissue layer, and they are shielded by the skin surface, which is actively involved in the regulation of body temperature (as a result of opening of sweat pores). Therefore, the thermal «portrait» actually detects the integral pattern of temperature dis-tribution. Using the simulation model we investigated the dependence of vein sizes registered on ther-mograms on the vein depth. The comparison of temperature profiles showed that, in the absence of «capillary heating» they were on average 1.57 times broader than the real size of vessel situated at the same depth when the capillary-simulating system was switched on. In addition, the width of the thermoprofile at the level of 0.87 of its amplitude was corresponded to the true diameter of vessel with an error of 5%. The results obtained in our model experiments were in agreement with the qualitative pattern characteristic of varicose veins of real patients, for which the depth of vein lying was measured using ultrasonic imaging. This approach showed that the actual size of vein injury can be determined at a depth of 20-25 mm (with at most 5% error), if the vein thermoprofiles are measured on the skin surface at the level of 0.85-0.9 of the amplitude of emitted radiation that is recorded by an infrared thermograph. This accuracy of measurements is sufficient to determine the degree of varicose veins for any diagnosing purpose. The development of methods of early diagnostics of woman breast cancer is one of most actual problems of modern medicine. We investigated the features of temperature distribution on breast thermograms for patients with breast cancer. It is shown that for patients with breast of small size without sufficient lipopexia the specific patterns formed by circulatory system are revealed on thermograms, what allows to diagnose the disease with confidence. The analysis of thermogams for patients with big breasts was done using zonal and radial al-gorithms for differential temperature comparison. The measurements display wide distribution in this case because of presence of thick low heat conductivity lipopexia layer which shields the thermal portrait of the circulatory system. The using of such approach does not allows to select unambiguous and sure criteria for disease reveal but allows to select the group of risk. The important problem during virus infections such as influenza is the prevention of epidem-ics spreading by selection of peoples arriving from infected regions. Our investigations show that such a control can realized on the base of distant thermography measurements by using infrared imagers. We developed the algorithm of automatical identification of persons with respiratory dis-eases which is based on differential temperature comparison in specifical control points the posi-tions of which are associated with physiological and morphological features of face. The method allows to realize the preliminary selection of persons on the base of obtained criteria. Thus, the modern technology of thermal imaging provides a powerful method of examination, which can be used both for medical diagnosis and for monitoring the efficacy of therapy. The work was done in framework of the Program «Fundamenal Sciences to Medicine», Russian Academy of Sciences, together with the I.M. Sechenov Moscow Medical Academy.
Pages: 3-16
References
  1. Lawson R N.Thermography - a new tool in the investigation of breast lesions // Canad. Ser. Med. J. 1957. V. 13. P. 517.
  2. Иваницкий Г.Р. Современное матричное тепловидение в биомедицине // Успехи физических наук. 2006. Т.176. № 12. С. 1293-1320.
  3. Иваницкий Г.Р., Деев А.А., Хижняк Е.П., Хижняк Л.Н. Анализ теплового рельефа на теле человека // Технологии живых систем. 2007. Т. 4. № 5-6. С. 43-50.
  4. Comparative Animal Physiology (Ed. C.Ladd Prosser). // Русск. перевод:  Philadelphia, London, Toronto: W.B. Saunders Company. 1973. «Сравнительная физиология животных». Т. 2. Под ред. Т.М. Турпаева.М: Мир. 1977. С. 175.
  5. Иваницкий Г.Р., Хижняк Е.П., Деев А.А., Хижняк Л.Н. Тепловидение в медицине: сравнительная оценка инфракрасных систем диапазонов длин волн 3-5 и 8-12 мкм для диагноститческих целей // Доклады академии наук. 2006. Т. 407. № 2. С. 258-262.
  6. Иваницкий Г.Р., Деев А.А., Пашовкин Т.Н., Хижняк Е.П., Хижняк Л.Н., Цыганов М.А.Осо­бенности теплового проявления подкожных источников нагрева на поверхности тела человека // Доклады академии наук. 2008. Т. 420. № 4. С. 551-555.
  7. Kerslake D.The Stress of Hot Environments. Cambridge: Cambridge University Press. 1972.
  8. Stanier M M, Mount L E, Bligh J.Energy balance and temperature regulation. Cambridge: Univ. Press. 1984.
  9. Теплопроводность. Физический энциклопедический словарь. М.: Сов. энциклопедия. 1983.С. 748.
  10. Михеев М.А., Михеева И.М. Основы теплопередачи. М.: Энергия. 1977. С. 32.
  11. Самарский А.А., Михайлов А.П. Математическое моделирование. М.: Физматлит. 2005. С. 71.
  12. Хижняк Л Н.Диагностика и контроль эффективности лечения заболеваний сосудов нижних конечностей с использованием матричных термовизионных систем // Дисс. ?канд. мед. наук. Тульский госуниверситет. 2005.
  13. Ли К. Молочная железа от А до Я / под общей ред. В.Ф. Семиглазова. СПб.: Норинт. 2000.
  14. Радиоизотопно-термографические исследования при опухолевых заболеваниях молочных желез. Методические рекомендации. / Министерство здравоохранения СССР. Главное управление лечебно-профилактической помо- щи. Управление онкологи­ческой помощи. М.: 1985.
  15. Иваницкий Г.Р., Деев А.А., Маевский Е.И., Хижняк Е.П., Хижняк Л.Н. Возможности термографии в современной ме­дицине: исследование пространственного из­менения температуры кожи человека при введении перфторана// Доклады академии наук. 2003. Т. 393. № 3. С. 419-423.
  16. Gautherie M.Temperature and blood-flow patterns in breast cancer during natural evolution and following radiotherapy, biomedical thermology. Alan R. Liss: New York. 1982. P. 21-4.
  17. Weidner N., Folkman J., Pozza F. et al. Tumor Angiogenesis: a New Significant and Independent Prognostic Indicator in Early-Stage Carcinoma // J. National Cancer Institute. 1992.
    V. 84. № 24. P. 1875-1887.
  18. Иваницкий Г.Р., Деев А.А., Крестьева И.Б., Хижняк Е.П., ХижнякЛ.Н. Особенности температурных распределений в области глаз // Доклады академии наук. 2004. Т. 398. № 5. С. 709-714.
  19. Иваницкий Г.Р., Деев А.А., Крестьева И.Б., Хижняк Л.Н., Хижняк Е.П. Влияет ли ритм дыхания на температурный портрет человека - // Доклады академии наук. 2006. Т.406. №6. С.840-844.