350 rub
Journal Technologies of Living Systems №5 for 2010 г.
Article in number:
THE PATHOGENETIC THEORIES OF DIABETIC NEUROPATHIES: YESTERDAY AND TODAY
Authors:
Al-Zamil Mustafa
Abstract:
Diabetes mellitus is a major cause of peripheral neurophathy, commonly manifexted as distal symmetrical polyneuropathy. Although chronic hyperglycaemia is almost certainly involved, it is not known whether the promary pa-thology is metabolic, microvascular or interaction between the two. The heterogeneity of diabetic neuropathy with involvment of large, myelinated fibres, as will as, small, thinly, or nonmyelinated fibers, suggests multible fzctors in pathogenesis. In this review we discuss the biochemistry and pathophysiology of hyperglycemia and the main theories of pathogenesis of diabetic neuropathy. Vascular role in pathogenesis of diabetic neuropathy has been discussed since 1893. Studies in human and animal models have shown reduced nerve perfusion and endoneurial hypoxia. Investigations on biopsy material from pathients with diabetic neuropathy show graded structural changes in nerve microvasculature including basement membrane thickening, pericyte degeneration and endothelial cell hyperplasia. However, In many experimental and theoretical researches, the greatest attention has focussed on metabolic disorders like: advanced glycation of structural proteins and accumulation of advanced GE; the activation of polyol pathway and accumulation of sorbitol, myo-inositol depletion and decreased protein kinasse C activity; increasing the formation of reactive oxygen spcies that causes serious damage to neuronal membranes. Followers of the metabolic theory consider vaso defects to be postprimary as the result of metabolic dis-order. Despite considerable research, we still do not have a comprehensive explanation for the pathogenesis of diabetic neuropathy. The review is based on the relevand literature published in the English language during the period 1990-2009.
Pages: 30-41
References
  1. Березов Т.Т.Биологическая химия. М.: Медицина. 1990. С. 544.
  2. Мари Р. Биохимия человека. М.: Мир. 1993. Т. 2. С. 416.
  3. Abdel Aziz M.T.TNF-alpha and homocysteine levels in type 1 diabetes mellitus // East. Mediterr. Health J. 2001. V. 7(4-5). P. 679-88.
  4. Angela E. Heesom Millward, Ann, Demaine, Andrew G.Susceptibility to diabeticneuropathy in patients with insulin dependent diabetes mellitus is associated with a polymorphism at the 5' end of the aldose reductase gene //
    J. Neurol. Neurosurg Psychiatry. 1998. V. 64. P. 213 - 216.
  5. Bekyarova G.Y., Ivanova D.G., Madjova V.H. Molecular mechanisms associating oxidative stress with endothelial dysfunction in the development of various vascular complications in diabetes mellitus // Folia Med. (Plovdiv). 2007. V. 49
    (3-4). P. 13-19.
  6. Bohren K.M., Bullock B., Wermuth B., Gabbay K.H. The aldo-keto reductase superfamily. The cDNAs and deduced amino acid sequences of human aldehyde and aldose reductases // J. Biol. Chem. 1989. V. 264. P. 9547 - 9551.
  7. Bolajoko E.B., Mossanda K.S., Adeniyi F., Akinosun O., Fasanmade A. Antioxidant and oxidative stress status in type 2 diabetes and diabetic foot ulcer // S. Afr. Med. J. 2008. V. 98(8). P. 614-7.
  8. Bottazzo G.F.Organ-specific autoimmunity: a 1986 overview //Immunol. Rev. 1986. Dec. V. 94. P. 137 - 69.
  9. Brussee V., Cunningham F.A., Zochodne D.W.
    Direct insulin signaling of neurons reverses diabetic neuropathy // Diabetes. 2004. V. 53(7).
    P. 1824-30.
  10. Chakrabarti S.C-peptide and retinal microangiopathy in diabetes // Exp. Diabesity Res. 2004. V. 5. P. 91-6.
  11. Donev S.R.Ultrastructural evidence for the presence of a glial sheath investing the islets of Langerhans in the pancreas of mammals // Cell. Tissue Res. 1984. V. 237. P. 343 - 348.
  12. Dutil A.l. Contribution a l-etude de I-arthrite obliterante progressive: et des nbvrita d-origine vasculaire // Arch. Med. Exp. Anat. Pathol. 1893. V. 6. P. 102-120.
  13. Dyck P.J., Karnes J.L., O'Brien C.P. The spatial distribution of fiber loss in diabetic polyneuropathy suggests ischemia // Ann. Neurol. 1986. May. V. 19(5). P. 440 - 9.
  14. Dyck P.J., Thomas P.K., Lambert E.H. Peripheral neuropathy, 2-nd ed. V. 1, 2. Philadelphia: W.B. Saunders. 1984.
  15. Dyck P.J., Zimmerman B.R.,Todd H.V. Nerve glucose, fructose, sorbitol myo-inositol and fiber degenration and regeneration in diabeticneuropathy //N. Engl. J. Med. 1988. V. 319. P. 542 - 548.
  16. Dyck P.J., Lambert E.H., Windenbank A.J. Acute hyperosmolar hyperglycemia causes axonal shrinkage and reduced nerve conduction velocity // Exp. Neurology. 1981. V. 71. P. 507 - 514.
  17. Fagerberg S.E.Diabetic neuropathy, a clinical and histological study on the significance of vascular affections // Acta Med. Scand. 1959. V. 345 (Suppl. 164). P. 1 ? 97.
  18. Gabriel C. Theories, types and treatments of diabetic neuropathy // Br. J. Hosp. Med. (Lond). 2008.
    V. 69(10). P. 556 - 61.
  19. Goh S.Y. Clinical review: The role of advanced glycation end products in progression and complications of diabetes // J. Clin. Endocrinol. Metab. 2008. V. 93(4). P. 1143-52.
  20. Gong X., Xie Z., Zuo H. Invivo insulin deficiency as a potential etiology for demyelinating disease // Med. Hypotheses. 2008. Sep. V. 71(3). P. 399 - 403.
  21. GreeneD.A., Lattimer-GreeneS. and Sima A.F. Pathogenesis of diabetic neuropathy: role of altered phosphoinositide metabolism // Crit. Rev. Neurobio. 1989. V.5. P. 143-219.
  22. Gumy L.F., BamptonE.T., TolkovskyA.M.Hyperglycaemia inhibits Schwann cell proliferation and migration and restricts regeneration of axons and Schwann cells from adult murine DRG // Mol. Cell Neurosci. 2008. V. 37(2). P.298 - 311.
  23. Hawthornde J.N. Inositol phospholipid and phosphatidic acid metabolism in response to membrane receptor activation // Proceedings oftheNuttition Society. 1985. V. 4. N. 4. P. 167 - 172.
  24. Hotamisligil G.S.Mechanisms of TNF-alpha-induced insulin resistance // Exp. Clin. Endocrinol. Diabetes. 1999a. V. 107. P. 119 - 25.
  25. Huijberts M.S., Schaper N.C., Schalkwijk C.G. Advanced glycation end products and diabetic foot disease // Diabetes Metab Res Rev. 2008. May-Jun. V. 24, Suppl 1. S. 19 - 24.
  26. Humpert P.M., Papadopoulos G., Schaefer K. sRAGE and esRAGE are not associated with peripheral or autonomic neuropathy in type 2 diabetes // Horm Metab Res. 2007. V. 39(12). P. 899 - 902.
  27. Jaeger C., Allendorfer J., Hatziagelaki E. Persistent GAD 65 antibodies in longstanding IDDM are not associated with residual beta-cell function, neuropathy or HLA-DR status // Horm. Metab. Res. 1997. V. 29. P. 510 - 515.
  28. Jin S.M., Nch C.I., Yang S.L.U., Bae E.J., Shin C.H., Chung H.R. Endothelial dysfunction and microvascular complications in type 1 diabetes mellitus // J. Korean Med. Sci. 2008. Feb. V. 23(1). P. 77 - 82.
  29. Kajita K.Increased platelet aggregation in diabetic patients with microangiopathy despite good glycemic control // Platelets. 2001. Sep. V. 12(6). P. 343 - 51.
  30. Kalani M.The importance of endothelin-1 for microvascular dysfunction in diabetes // Vasc. Health. Risk. Manag. 2008. V. 4(5). P. 1061-8.
  31. Kamiya H. et al.Polyol pathway and protein kinase C activity of rat Schwannoma cells // Diabetes Metab Res Rev. 2003. Mar-Apr. V. 19(2). P. 131-9.
  32. Kenji Uehara.Effects of Polyol Pathway Hyperactivity on Protein Kinase C Activity, Nociceptive Peptide Expression, and Neuronal Structure in Dorsal Root Ganglia in Diabetic Mice // Diabetes. 2004. V. 53. P. 3239 - 3247.
  33. Kobayashi Y., Naruse K., Hamada Y. Human proinsulin C-peptide prevents proliferation of rat aortic smooth muscle cells cultured in high-glucose conditions // Diabetologia. 2005. V. 48. P. 2396-401.
  34. Leong F. Diabetes induced by streptozotocin causes reduced Na−K ATPase in the brain // Neurochemical Research. 1991. V. 16. N. 10. P. 1099 - 1185.
  35. Lorenzi M., Cagliero E., Toledo S. Glucose toxicity for human endothelial cells in culture // Diabetes. 1985. V.34. P.621-627.
  36. Louvet C.A novel myelin P0-specific T cell receptor transgenic mouse develops a fulminant autoimmune peripheral neuropathy // J. Exp. Med. 2009. V. 206(3). P. 507-14.
  37. Malik R.A., Veves A., Masson E.A. Endoneurial capillary abnormalities in mild human diabetic neuropathy // J. Neurol. Neurosurg Psychiatry. 1992. V. 55. P. 557 - 561.
  38. Marchal de Calvi. J: (1884) Recherches sur les Accidents Diabetiques. Paris Cited by Jordon. 1936.
  39. McDevitt H.O. Autoimmune diabetes and its antigenic triggers //Hosp. Pract. (Minneap). 1995. V.30(7). P.55 - 62.
  40. Nakamura J.et al. A protein kinase C-ß?selective inhibitor ameliorates neural dysfunction in streptozotocin-induced diabetic rats //Diabetes. 1999. V.48. P. 2090 - 2095.
  41. Oztürk G., Erdoğan E., Oztürk M., Cengiz N., Him A. Differential analysis of effect of high glucose level in the development of neuropathy in a tissue culture model of diabetes mellitus: role of hyperosmolality // Exp. Clin. Endocrinol Diabetes. 2008. Nov. V. 116(10). P. 582 - 91.
  42. Peter J.D. Hypoxic neuropathy: Does hypoxia play a role in diabetic neuropathy. The 1988 Robert Wartenberg Lecture // Neurology. 1989. V.39. P. 111 - 118.
  43. Price S. Al.Mitogen-activated protein kinase p38 mediates reduced nerve conduction velocity in experimental diabetic neuropathy: interactions with aldose reductase // Diabetes. 2004. V. 53(7). P. 1851 - 6.
  44. Rogers L.C. The use of marrow-derived stem cells to accelerate healing in chronic wounds // Int. Wound. J. 2008. Mar. V. 5(1). P.20-5.
  45. Saravia-Fernandez F. Localization of γ-amino­butyric acid and glutamic acid decarboxylase in the pancreas of the nonobese diabetic mouse // Endocrinology. 1996. V. 137. P. 3497-3506.
  46. Sima A.A., Kamiya H. Is C-peptide replacement the missing link for successful treatment of neurological complications in type 1 diabetes - // Curr. Drug. Targets. 2008. V. 9(1). P. 37-46.
  47. Sima A.A.The heterogeneity of diabetic neuropathy // Front Biosci. 2008. V.13. P.4809-16.
  48. Sivenius K.Aldose reductase gene polymorphisms and peripheral nerve function in patients with type 2 diabetes // Diabetes Care. 2004. V. 27(8). P. 2021-6.
  49. Soley Thrainsdottir. Endoneurial Capillary Abnormalities Presage Deterioration of Glucose Tolerance and Accompany Peripheral Neuropathy in Man // Diabetes. 2003. V. 52. P. 2615-2622.
  50. Song Z.Transgenic mice overexpressing aldose reductase in Schwann cells show more severe nerve conduction velocity deficit and oxidative stress under hyperglycemic stress // Mol. Cell. Neurosci. 2003. V.23(4). P. 638-47.
  51. Taiga Shibata,.Oiso Y., Nakamura.Transplantation of Bone Marrow-Derived Mesenchymal Stem Cells Improves Diabetic Polyneuropathy in Rats // Diabetes. 2008. V. 57. P. 3099-3107. 2008.
  52. Tomlinson D.R., Verkhratsky A., Fernyhough P. Glucose neurotoxicity // Nat. Rev. Neurosci. 2008. V.9(1). P. 36 - 45.
  53. Toth C. RAGE, diabetes, and the nervous system // Curr. Mol. Med. 2007. Dec. V.7(8). P.766-76.
  54. Tremolada G. The therapeutic potential of VEGF inhibition in diabetic microvascular complications // Am. J. Cardiovasc Drugs. 2007. V. 7(6). P. 393 - 8.
  55. Unger J.W. Nerve Growth Factor (NGF) and Diabetic Neuropathy in the Rat: Morphological Investigations of the Sural Nerve, Dorsal Root Ganglion, and Spinal Cord Experimental // Neurology. 1998. V.153. Issue 1. September. P. 23-34.
  56. Vanotti A. Overview on pathophysiology and newer approaches to treatment of peripheral neuropathies // CNS Drugs. 2007. V. 21. Suppl. 1. P. 3-12.
  57. Vinik A.I. Autoimmune mechanisms in the pathogenesis of diabetic neuropathy. Molecular Mechanisms of Endocrine and Organ Specific
    Autoimmunity. Georgetown. Texas: Landes Company. 1998. P. 217 - 251.
  58. Vinik D., Ullal J.  Antibodies to Neuronal Structures: Innocent bystanders or neurotoxins - // Diabetes Care. 2005. V. 28(8). 2067 - 2072. 
  59. Waksman B.H.  Allergic neuritis: an experimental disease of rabbits induced by the injection of peripheral nervous tissue and adjuvants // J. Exp. Med. 1955. V.102. P. 213-236.
  60. Walcher D., Babiak C., Poletek P. C-Peptide induces vascular smooth muscle cell proliferation: involvement of SRC-kinase, phosphatidylinositol 3-kinase, and extracellular signal-regulated kinase 1/2 // Circ. Res. 2006. V. 99. P. 1181-7.
  61. Whiting P.H.Enzymes of myo-Inositol and Inositol Lipid Metabolism in Rats with Streptozotocin-// Induced Diabetes Biochem. J. 1979. V. 179. P. 549-553.
  62. Winer S. utoimmune islet destruction in spontaneous type 1 diabetes is not ß-cell exclusive // Nat. Med. 2003. V. 9. P. 198-205.
  63. Wislet-Gendebien S.Astrocytic and neuronal fate of mesenchymal stem cells expressing nestin // Brain Res. Bull.2005. V. 68. P. 95-102.
  64. Woltman H.W. et al. Pathological changes in the spinal cord and peripheral nerves // Arch. Intern. Med. 1929. V. 44. P. 576 - 603.
  65. Ziegler D.Oxidative stress and antioxidant defense in relation to the severity of diabetic polyneuropathy and cardiovascular autonomic neuropathy // Diabetes Care. 2004. V. 27(9). P. 2178-83.