350 rub
Journal Technologies of Living Systems №4 for 2010 г.
Article in number:
THERMAL-LENS SPECTROMETRY IN STUDIES OF HEMOPROTEINS
Authors:
D.S. Volkov, K.I. Tishchenko, D.A. Nedosekin, A.V. Brusnichkin, M.A. Proskurnin, V.P. Zharov, Yu.A. Vladimirov
Abstract:
Thermal-lens spectrometry (TLS) is one of the most sensitive methods of molecular-absorption spectroscopy complementing conventional methods, as spectrophotometry and IR spectroscopy measure the transmittance of the electromagnetic radiation, while TLS is based on nonradiative transfers of excited molecules caused by the absorbed part of the radiation going through a sample. Thermal relaxation of the absorbed energy results in sample heating and the formation of a nonuniform spatial profile of the refractive index (a thermal lens). The optical strength of the thermal lens is directly proportional to the absorbance of the sample and, thus, to the concentration and absorption coefficient of the studied compound. By increasing the power of the excitation beam, it is possible to achieve the same high sensitivity as in luminescence analysis but for nonfluorescent molecules. Methods of TLS provide the detection of absorbances in liquids of 10-9 - 10-6 abs. units (corresponding concentrations of 10-11 mol L-1) and to analyze volumes of 10-12 L with as low as several absorbing molecules in this volume. If processes of the dissipation of the absorbed radiation other than thermal relaxation exist (lumines-cence or photochemical processes), the strength of the thermal-lens effect is decreased as expected, and this phenomenon can be used for elucidating such processes and estimating its quantum yields. The aim of this paper was (1) to estimate the possibilities of thermal-lens spectrometry for relevant determination of the absorption-band parameters of heme proteins (forms and complexes of haemoglobin and cytochrome c) and (2) by the examples of photochemically stable and unstable protein species, to show that a comparison of optical and thermal-lens measurements can be used for revealing photochemical processes in the system in question, which is important for studying laser and diode radiation effect on biological materials. We compare optical and thermal-lens absorptions spectra of some heme proteins (forms and complexes of haemoglobin and cytochrome c). It is shown that thermal-lens spectrometry shows wide potentialities both for the determining the absorption-band parameters of proteins and for detecting laser-induced photochemical reactions; high precision of the measurements of absorption spectra is observed both in solutions and in cellular structures. For haemoglobin and cytochrome c we estimated the amounts of proteins providing the determination of molar absorptivities from thermal-lens measurements with enough precision. For all the species studied it was 0.1-0.2 pmol (1-2 ng) of proteins. For a cardiolipin-cytochrome c-NO complex, for which previous studies relaibly show mainly photochemical rather than He thermal effect of the laser radiation, we estimated the quantum yield of the photolysis reaction from thermal-lens measurements, 0.45  0.08.
Pages: 35-43
References
  1. Гришко В.И., Гришко В.П., Юделевич И.Г., Лазерная аналитическая термолинзовая спектроскопия. Новосибирск: Ин-т неорганической химии СО РАН. 1992.
  2. Жаров В.П., Летохов В.С., Лазерная оптико-акустическая спектроскопия. М.: Наука. 1984.
  3. Snook R.D., Lowe R.D. Thermal lens spectrometry. A review // Analyst. 1995. V. 120. Nо. 8. P. 2051-2068.
  4. Bialkowski S.E.,Photothermal Spectroscopy Methods for Chemical Analysis. NewYork: Wiley. 1996.
  5. Проскурнин М.А., Кононец М.Ю., Современная аналитическая термооптическая спектроскопия // Успехи химии. 2004. Т. 73. № 12.
    С. 1235-1268.
  6. Lapotko D.O., Romanovskaya T.R., Shnip A. et al. Photothermal time-resolved imaging of living cells // Laser Surg. Med. 2002. V. 31. Nо. 1. P. 53-63.
  7. Lapotko D. Monitoring of Apoptosis in Intact Single Cells with Photothermal Microscope // Cytometry. 2004. V. 58A. P. 111-119.
  8. Lapotko D., Lukianova E.Influence of physiological conditions on laser damage thresholds for blood, heart and liver cells //Laser Surg. Med. 2005. V. 36. Nо. 1. P. 13-21.
  9. Проскурнин М.А., Аброскин А.Г., Радушкевич Д.Ю. Двухлазерный термолинзовый спектрометр для проточного анализа // Журнал аналитической химии. 1999. Т. 54. № 1. С. 101-108.
  10. Arnaud N., Georges J. On the analytical use of the Soret-enhanced thermal lens signal in aqueous solutions // Anal. Chim. Acta. 2001. V. 445. Nо. 2. P. 239-244.
  11. Черныш В.В., Проскурнин М.А., Кононец М.Ю. и др. Применение термолинзовой спектрометрии для расчета констант устойчивости комплексных соединений // Изв. академии наук. Сер. химическая. 2005. Т. 54 № 1, С. 123-133.
  12. Fischer M., Georges J. Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry //Chem. Phys. Lett. 1996. V. 260. Nо. 1-2. P. 115-118.
  13. Филичкина В.А., Аброскин А.Г., Проскурнин М.А. и др. Использование термолинзовой спектрометрии для определения микроколичеств железа в виде комплекса с 1,10-фенантролином // Журнал аналитической химии. 1992. Т.47. №.8. С. 1417-1427.
  14. Филичкина В.А., Аброскин А.Г., Жарикова О.М. и др. Применение термолинзовой спектромет­рии для определения микроколичеств никеля
    в виде диоксиматов в водно-этанольной среде // Журнал аналитической химии. 1992. Т.47. №.4. С. 660-665.
  15. Брусничкин А.В, Недосекин Д.А, Рындина Е.C. и др. Определение различных форм гемоглобина методом термолинзовой спектрометрии // Вестник Моск. Ун-та. Сер. 2. Химия. 2009. Т. 50. № 1. С. 55-66.
  16. Брусничкин А.В., Марикуца А.В., Проскурнин М.А. и др. Термолинзовое определение цитохрома c и его комплекса с NO // Вестник. Моск. Ун-та. Сер. 2. Химия. 2008. Т. 49. № 6. С. 412-417.
  17. Karu T. Low-power laser therapy, in Biomedical Photonics Handbook. 2003. CRC Press LLC. P. 48-1-48-25.
  18. Zharov V.P., Galanzha E.I., Tuchin V.V. Photothermal image flow cytometry in vivo // Opt. Lett. 2005. V. 30. Nо. 6. P. 628-630.
  19. Осипов А.Н., Борисенко Г.Г., Владимиров Ю.А. Биологическая роль нитрозильных комплексов гемопротеинов // Успехи биологической химии. 2007. Т. 47. С. 259-292.