350 rub
Journal Technologies of Living Systems №7 for 2009 г.
Article in number:
MATHEMATICAL TECHNOLOGIES FOR THE ANALYSIS OF KINETIC FACTORS IN THE DEVELOPMENT OF IMMUNE RESPONSES
Keywords:
mathematical modeling
immune response
virus infections
distributed parameters systems
model identification
Authors:
G.A. Bocharov, V.A. Chereshnev, T.B. Luzyanina, E.A. Chiglintsev, B. Ludewig
Abstract:
The dynamics and outcome of infectious diseases depend both on the ability of the pathogen to spread rapidly in the host and also on the intensity of the cytotoxic T cell responses. Therefore, the analysis of the kinetic parameters of virus replication and clonal dynamics is one of the major factors for understanding the pathogenesis of virus and bacterial infections such as human im-munodeficiency virus infection (HIV), viral hepatitis B and C, tuberculosis. This work presents a methodology for developing biologically relevant mathematical models and computational technol-ogies for efficient parameter estimation problems related to virus replication and T cell turnover using experimental data. The formulation of quantitatively consistent theoretical models of immune responses and the methodology of their application for the analysis of pathogenic mechanisms of unfavorable outcomes of virus infections is the central task of mathematical immunology. The formal description of virus and immune response dynamics using mathematical structures and the model calibration require the introduction of some fundamental notions and procedures, such as direct and inverse problems, maximum likelihood approach, a priori identifiability. These issues are consistently presented in the context of the analysis (1) of the kinetic regulation of T-cell responses during acute LCMV infection in mice and (2) the in vitro T cell proliferation experiments based upon the carboxyfluorescein succinimidyl ester (CFSE) labeling. The computations were performed using the MATLAB programming system for analysis and visualization. We show that the magnitude of T cell response depends on the rate of virus replication in a bell-shaped form. There exist two ranges of the virus growth rates in which the sensitivity of T cell responses appears to be positive and negative, respectively. In the first one, the maximum CTL number increases with the higher virus growth rate, whereas in the second one it decreases for faster replication viruses. Using the flow cytometry data coming from standard carboxyfluorescein succinimidyl ester (CFSE) based proliferation experiments in the form of the histograms of cell distributions with respect to CFSE expression, we identify the kinetic parameters (cell division and apoptosis rates), characterizing the proliferative status of stimulated T-cells. We showed that the mean cell division time depends significantly on the number of completed mitoses and decreases about three-fold for cells which have undergone two divisions as compared to naïve cells. The results of our research provide a mathematical basis in the form of problem-oriented computational technologies for an integrative analysis of HIV infection pathogenesis, and in particular the processes underlying the increasing imbalance between the production and death of CD4 cells with both the spatial organization of secondary lymphoid organs and virus evolution taken into account.
Pages: 4-15
References
- Цинкернагель Р.Основы иммунологии / пер. с нем. М.: Мир. 2008. 135 с.
- Doherty P.The numbers game for virus-specific CD8+ T cells //Science. 1998. V. 280. P. 227.
- Grossman Z., Paul W.Autoreactivity, dynamic tuning and selectivity // Curr. Opin. Immunol.2001. 13: 687-698.
- Lyons A.B., Doherty K.V.Flow cytometric analysis of cell division by dye dilution // Curr. Protoc. Cytom. 2004. Chapter 9: Unit 9.11.
- Никонова М.Ф., Ярилин А.А. Пролиферативный статус TH1- и TH2-клеток человека // Иммунология. 2006.Т. 27(4). С. 203-208.
- Бочаров Г.А., Лузянина Т.Б., Розе Д. Математические технологии анализа пролиферации Т-лимфоцитов по данным проточной цитофлуорометрии // Российский иммунологический журнал. 2009. Т. 3(12). № 1, С. 13-22.
- Бочаров Г.А., Марчук Г.И. Прикладные проблемы математического моделирования в иммунологии // ЖВМиМФ. 2000. Т. 40. № 12. С. 1905-1920.
- Luzyanina T., Roose D., Bocharov G.Distributed parameter identification for a label-structured cell population dynamics model using CFSE histogram time-series data // J. Math. Biol. 2009. V. 59(5). P. 581-603.
- Matlab URL: http://www.mathworks.com
- Чен К., Джиблин П., Ирвинг А.MATLAB в математических исследованиях. М.: Мир. 2001. 346 с.
- Shampine L. Solving hyperbolic PDEs in MAT LAB
// Appl. Numer. Anal. Comput. Math. 2005. V. 2(3). P. 346-358. - Venzon D.J., Moolgavkar S.H. A method for computing profile-likelihood-based confidence intervals // Appl. Stat. 1988. V. 37(1). P. 97-94.
- Льюнг Л. Идентификация систем. Теория для пользователя. М.: Наука. 1991. 432 с.
- Xia X., Moog C.H. Identifiability of nonlinear systems with application to HIV/AIDS models // IEEE Transactions on automatic control. 2003. Т. 48. № 2. P. 330-336.
- Moskophidis D., Lecher F., Pircher H. Zinkernagel R.M. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells // Nature. 1993. V. 362. P. 758 - 761.
- Bocharov G.A. Modelling the dynamics of LCMV infection in mice: conventional and exhaustive CTL responses // J. theor. Biol. 1998. 192, 283-308.
- Bocharov G., Klenerman P., Ehl S. (2003): Modelling the dynamics of LCMV infection in mice: II. Compartmental structure and immunopathology // J. Theor. Biol. 2003.V. 221. P. 349-378
- Bocharov G., Ludewig B., Bertoletti A., Klenerman P., Junt T., Krebs P., Luzyanina T., Fraser C. and Anderson R.M.Underwhelming the Immune Response: Effect of Slow Virus Growth on CD8+-T-Lymphocyte Responses //J. Virology. 2004.78. 2247-2254
- Doherty P.C., Christensen J.P. Accessing complexity: The dynamics of virus-specific T cell responses // Annu Rev Immunol.2000. 18. 561-592.