350 rub
Journal Technologies of Living Systems №5 for 2009 г.
Article in number:
PHYSICO-MATHEMATICAL PHOTODYNAMIC HUMAN PROSTATE CANCER THERAPY MODEL: SIMULATION RESULTS
Authors:
G.V. Zenkovskiy, A.A. Kornilova, V.M. Naskhletashvili
Abstract:
This work describes computer simulation of laser irradiation propagation results in human tissue (prostate) based on fundamental optical effects such as elastic scattering (static and dynamic), optical fields and photon density waves diffraction and interference. These results are essential both for understanding light propagation process in disperse mediums with absorption and for developing new medical-optics diagnostics and treatment technologies such as photodynamic therapy. We have set the computer model by determining prostate tissue optical properties and setting the bounds between prostate areas with different optical properties. Then we used diffuse approximation of transport equation to simulate light propagation in prostate tissues. To take into consideration PS properties we applied dose distribution equation witch depends on extinction coefficient, photobleaching velocity, total emission current through the tissue and initial PS tissue concentration. To introduce laser emission into the prostate tissue we used brachy therapy method, which includes the following steps: determining the prostate location by ultra sound method, preparing special needles sample according to prostate location, introducing hollow needles into the tissue and inside prostate by ultrasound control, introducing optical fiber into the tissue. The simulation results revealed that the PDT treatment process succeeded while introducing into the prostate 5 optical fiber: 4 of them with 20 mW/cm power, and 1 fiber with 10 mW/cm. All fiber should be introduced into prostate tissue according to determined brachy therapy sample.
Pages: 60-64
References
  1. Тучин В.В. Лазеры и волоконная оптика в биомедициеских исследованиях. Саратов: Изд-во Сарат. ун-та. 1998. С. 9, 23 - 25.
  2. Chen Q., Huang Z.Tookad (WST09) mediated photodynamic theraphy as an alternative modality in treatment of prostate cancer // Proccedings of SPIE. 2004. V.4. Р.612 - 616.
  3. Young A.R.,Chromophores in human skin // Phys. Med. Biol. 1997. V. 42. P.789 - 802.
  4. Roggan A., Muller G. Laser-induced interstitial thermotherapy. Bellingham. SPIE. 1995.
  5. Geshwind J.H. Recent developments in cardiac surgery // J. Biomed. Opt. 1996. V.1. N.1, P.28-30.
  6. Tuchin V.V. Selected papers on tissue optics: applications in medical diagnostics and therapy // Bellingham. SPIE. 1994. V. MS102.
  7. Dunn A., Smithpeter C. Finite-difference time domain simulation of light scattering from single cells // J.Biomed. Opt. 1997. V.2. N.3. P.262 - 266.
  8. Владимиров Ю.А., Потапенко А.Я. Физико-химические основы фотобиологических процессов. М.: Высш. шк. 1989.
  9. Patterson M.S., Chance B., Wilson B.C.Time resolved reflectance and transmittance for the non-invasive measurements of optical properties // Appl. Opt. 1989. V. 28. P. 2331 - 2336.
  10. Liu F., Yoo K.M., Alfano R.R.Should the photon flux or photon density be used to discribe temporal profiles of scatered ultrashort laser pulses in random media - // Opt.Lett. 1993. V. 18. P. 432 - 434.
  11. Kaltenbach J.M., Kaschke M.  Frequency- and time-domain modeling of light tranport in random media, in medical Optical Tomography: Functional Imaging and Monitoring / eds G.J. Muller, B. Chance, R.R. Alfano // SPIE Optical Engeneering Press. Bellingham. Washington. USA. 1993.
  12. Case M.K., Zweifel P.F.Linear transport theory // Addison-Wesley Publishing Co. Reading. MA. 1967.
  13. Городничев Е.Е., Рогозкин Д.Б. Малоугловое многократное рассеяние света в случайно-неоднородных средах // ЖТЭФ. 1995. Т. 107. С. 209 - 235.
  14. Исимару А.Распространение волн в случайно-неоднородных средах. М.: Мир. 1981.
  15. Lidge L., Douplick A. Transperineal in vivo fluence-rate dosimetry in the canine prostate during SnET2-mediated PDT // Phys. Med. Biol. 2004. V. 49. P. 3209 - 3225.
  16. Zaak D., Sroka R., Khoder W. 833 Photodynamic diagnosis (PDD) and therapy (PDT) in human prostate cancer be maens of ALA-5 - first clinical results. // European Urology Supplements. 2004. V. 3. Issue 2. P.211.
  17. Avigor S., Yoram S. Riding the chlorophylls: From photosynthetic energy conversion to cancer therapy // Department of Plant Science and Biological Regulation. 2004.
  18. Wilson B., Whelan W. Treatment planing platform for photodynamic therapy: Architecture, function and validation // SPIE. 2002. V. 4612. P. 85 - 92.
  19. Zhu T.C., Hahn S.M., Kapatkin A.S., Dimofte A., Rodriguez C.E.In vivooptical properties of normal canine prostate at 732 nm using motexafin lutetium-mediated photodynamic therapy // Photochem. Photobiol. 2003.P. 7781-7788.
  20. Clinical Cancer Research. 2001. V. 7. P. 651-660.