350 rub
Journal Technologies of Living Systems №5 for 2009 г.
Article in number:
INFLUENCE OF STIMULUS DURATION AND FREQUENCY OF MECHANICAL WHISKER STIMULATION ON THE STABILITY OF NEURONAL RESPONSES IN THE TRIGEMINAL SENSORY COMPLEX
Authors:
A.N. Pavlov, A.N. Tupitsyn, A. Moreno, V.A. Makarov
Abstract:
In this paper we study mechanisms of tactile information processing in the trigeminal nuclei of the rat using wavelet analysis of neuronal responses to periodic whisker stimulation by short air puffs. It is shown that dynamical stability (degree of reliability) of the neural responses depends both on the duration and on the frequency of the stimulating air pulses. Response dynamics in the principalis (Pr5) and interpolaris (Sp5i) nuclei is relatively similar and contrasts to that of the oralis (Sp5o) neurons. Neurons from Pr5 and Sp5i show the maximal stability at intermediate (50 ms) stimulus duration, whereas Sp5o neurons exhibit stable responses at shorter (10 ms) stimulation. We also show that neurons of all three nuclei can perform as stimulus filters with three main type of transduction characteristic: i) low pass, i.e. the response stability decreases with an increase of the stimulus frequency; ii) band pass; i.e. stability reaches the maximum for an optimal stimulus frequency (5 Hz for Pr5, Spi5 and 4 Hz for Sp5o); and iii) the lack of prominent dependence of the response stability from the stimulus frequency.
Pages: 15-25
References
  1. Tuckwell H.C.Introduction to theoretical neurobiology. V. 1, 2. Cambridge: Cambridge University Press. 1988.
  2. Darian-Smith I. The trigeminal system. In: Iggo A. (ed.) Handbook of Sensory Physiology. Berlin: Springer. 1973. P. 271.
  3. Arvidsson J.Somatosensory organization of vibrissae afferents in the trigeminal sensory nuclei of the rat studied by transganglionic transport of hrp // J. Comp. Neurol. 1982. V. 211. P. 84.
  4. Hayashi H.Distributions of vibrissae afferent fiber collaterals in the trigeminal nuclei as revealed by intra-axonal injection of horseradish peroxidase // Brain Res. 1980. V. 183. P. 442.
  5. Woolsey T.A., Van der Loos H.The structural organization of layer iv in the somatosensory region (si) of mouse cerebral cortex // Brain Res. 1970. V. 17. P.205.
  6. Jasquin M.F., Reneham W.E., Rhoades R.W., Panneton M. Morphology and topography of identified primary afferents in trigeminal subnuclei principalis and oralis // J. Neurophysiol. 1993. V. 70. P. 1911.
  7. Moreno A., Garsia-Gonzalez V., Sanches-Jimenez A., Panetsos F. Principalis, oralis and interpolaris responses to whisker movements provoked by air jets in rats // NeuroReport. 2005. V. 16. P. 1569.
  8. Lewicki M. A review of methods for spike sorting: the detection and classification of neural potencials // Net. Com. Neu. Sys. 1998. V. 9. P. R53.
  9. Eggermont J., Epping W., Aertsen A.Stimulus dependent neural correlations in the auditory midbrain of the grassfrog (Rana temporaria L.) // Biol. Cybern. 1983. V. 47. P. 103.
  10. Pavlov A.N., Makarov V.A., Panetsos F. Separation of extracellular spikes: When wavelet based methods outperform the principle component analysis // Lecture Notes in Computer Science. Berlin: Springer-Verlag. 2005. P. 123.
  11. Grossman A., Morlet J.Decomposition of hardy functions into square integrable wavelets of constant shape // S.I.A.M. J. Math. Anal. 1984. Vol. 15. P. 723.
  12. Meyer Y. (ed.) Wavelets and Applications. Berlin: Springer-Verlag. 1992.
  13. Mallat S.G. A Wavelet Tour of Signal Processing. SanDiego: AcademicPress. 1998.
  14. Астафьева Н.М. Вейвлет-анализ: основы теории и примеры применения // Успехи физических наук. 1996. Т. 166. N. 11. C. 1145.
  15. Pavlov A.N., Makarov V.A., Mosekilde E., Sosnovtseva O.V. Application of wavelet-based tools to study the dynamics of biological processes // Briefings in Bioinformatics. 2006. V. 7. P. 375.
  16. Marsh D.J., Sosnovtseva O.V., Pavlov A.N.,
    Yip K.-P., Holstein-Rathlou N.-H.
    Frequency encoding in renal blood flow regulation // American Journal of Physiology. 2005. V. 288. P. R1160.
  17. Pavlov A.N., Tupitsyn A.N., Makarov V.A., Panetsos F., Moreno A., Garcia-Gonzalez V., Sanchez-Jimenez A. Tactile information processing in the trigeminal complex of the rat / In Complex Dynamics, Fluctuations, Chaos and Fractals in Biomedical Photonics IV // Proc. SPIE. 2007. V. 6436. P. 64360R.
  18. Carvell G.E., Simons D.J. Task- and subject-related differences in sensorimotor behavior during active touch // Somat. Mot. Res. 1995. V. 12. P. 1.
  19. Harvey M.A., Bermejo R., Zeigler H.P.Discriminative whisking in the head-fixed rat: optoelectronic monitoring during tactile detection and discrimination tasks // Somat. Mot. Res. 2001. V. 18. P. 211.
  20. Garabedian C.E., Jones S.R., Merzenich M.M., Dale A., Moore C.I. Band-pass response properties of rat SI neurons // J. Neurophysiology. 2003. V. 90. P. 1379.
  21. Sosnovtseva O.V., Pavlov A.N., Brazhe N.A., Brazhe A.R., Erokhova L.A., Maksimov G.V., Mosekilde E. Interference microscopy under double-wavelet analysis: A new approach to studying cell dynamics // Physical Review Letters. 2005. V. 94. P. 218103(4).
  22. Brazhe N.A., Brazhe A.R., Pavlov A.N., Erokhova L.A., Yusipovich A.I., Maksimov G.V., Mosekilde E., Sosnovtseva O.V. Unreveling cell processes: Interference imaging weaved with data analysis // Journal of Biological Physics. 2006. V. 32. P. 191.
  23. Welker W.I. Analysis of sniffing of the albino rat // Behavior. 1964. V. 12. P. 223.