350 rub
Journal Technologies of Living Systems №4 for 2009 г.
Article in number:
PHYSICS-MATHEMATICAL PHOTODYNAMIC HUMAN PROSTATE CANCER THERAPY MODEL: PHYSICS-MATHEMATICAL MODEL DETERMINATION
Authors:
G.V. Zenkovskiy, A.A. Kornilova, V.M. Naskhletashvili
Abstract:
Photodynamic therapy (PDT) is one of the most progressive and widely used diagnostics and cancer treatment methods all over the world. This work describes PDT method implementation for prostate cancer. The method-s gist is the oncology tissue irradiation with low intensity laser emission, which doesn-t cause normal tissue thermal necrosis. The special dye called - photosensitizer (PS) ? with absorption maximum on irradiation wavelength introduced into the tissue before irradiation process. PS gets the sufficient energy after irradiation to activate cell oxygen. These leads to the cancer tumor photo destruction process activation. The active oxygen distracts tumor cell membranes and acts locally. Actually, tumor tissues get more laser emission energy then normal tissues, this leads to selective destruction and limitations of metastatic process. In this work we determine physico-mathematical model that describes prostate cancer PDT process most thoroughly. We have set the computer model by determining prostate tissue optical properties and setting the bounds between prostate areas with different optical properties. Then we used diffuse approximation of transport equation to simulate light propagation in prostate tissues. To take into consideration PS properties we applied dose distribution equation witch depends on extinction coefficient, photobleaching velocity, total emission current through the tissue and initial PS tissue concentration. To introduce laser emission into the prostate tissue we used brachy therapy method, which includes the following steps: determining the prostate location by transrecatl ultra sound, preparing special needles sample according to prostate location, introducing hollow needles into the tissue and inside prostate by ultrasound control, introducing optical fiber into the tissue.
Pages: 59-65
References
  1. Тучин В.В. Лазеры и волоконная оптика в биомедициеских исследованиях. Саратов: Изд-во Сарат, ун-та. 1998. С. 9, 23-25.
  2. Chen Q., Huang Z. Tookad(WST09) mediated photodynamic theraphy as an alternative modality in treatment of prostate cancer// Proccedings of SPIE. 2004. V. 4. Р. 612-616.
  3. Young A.R. Chromophores in human skin// Phys. Med. Biol. 1997. V. 42. P. 789-802.
  4. Laser-induced interstitial thermotherapy// Eds, Roggan A., Muller G. Bellingham. SPIE. 1995.
  5. Geshwind J.H. Recent developments in cardiac surgery // J. Biomed. Opt. 1996. V.1. No. 1.
    P. 28-30.
  6. Selected papers on tissue optics: applications in medical diagnostics and therapy / Ed. V.V. Tuchin. Bellingham. SPIE. 1994. V. MS102.
  7. Dunn A., Smithpeter C. Finite-difference time domain simulation of light scattering from single cells// J. Biomed. Opt. 1997. V. 2. No3. P.262-266.
  8. Владимиров Ю.А., Потапенко А.Я. Физико-химические основы фотобиологических процессов. М.: Высш. шк. 1989.
  9. Patterson M.S., Chance B., Wilson B.C. Time resolved reflectance and transmittance for the non-invasive measurements of optical properties // Appl. Opt. 1989. V. 28. P. 2331-2336.
  10. Liu F., Yoo K.M., Alfano R.R. Should the photon flux or photon density be used to discribe temporal profiles of scatered ultrashort laser pulses in random media - // Opt. Lett. 1993. V. 18. P. 432-434.
  11. Kaltenbach J.M., Kaschke M. Frequency- and time-domain modeling of light tranport in random media, in medical Optical Tomography: Functional Imaging and Monitoring. eds Muller G.J., Chance B., Alfano R.R. // SPIE Optical Engeneering Press. Bellingham. Washington. USA. 1993.
  12. Case M.K., Zweifel P.F. Linear transport theory // Addison-Wesley Publishing Co. Reading. MA. 1967.
  13. Городничев Е.Е., Рогозкин Д.Б. Малоугловое многократное рассеяние света в случайно-неоднородных средах. // ЖТЭФ. 1995. Т. 107. С. 209-235.
  14. Исимару А. Распространение волн в случайно-неоднородных средах. М.: Мир. 1981.
  15. Lidge L., Douplick A. Transperineal in vivo fluence-rate dosimetry in the canine prostate during SnET2-mediated PDT //Phys. Med. Biol. 2004. V. 49. P. 3209-3225.
  16. Zaak D., Sroka R., Khoder W. 833 Photodynamic diagnosis (PDD) and therapy (PDT) in human prostate cancer be maens of ALA-5 - first clinical results. // European Urology Supplements. 2004. V. 3. Issue 2. P. 211.
  17. Avigor S., Yoram S. Riding the chlorophylls: From photosynthetic energy conversion to cancer therapy. // Department of Plant Science and Biological Regulation. 2004.
  18. Wilson B., Whelan W. Treatment planing platform for photodynamic therapy: Architecture, function and validation. // SPIE. 2002. V. 4612. P. 85-92.
  19. Zhu T.C., Hahn S.M., Kapatkin A.S., Dimofte A, Rodriguez C.E. In vivo optical properties of normal canine prostate at 732 nm using motexafin lutetium-mediated photodynamic therapy // Photochem. Photobiol. 2003. P. 7781-8.
  20. Clinical Cancer Research. 2001. March. V. 7.