350 rub
Journal Science Intensive Technologies №5 for 2025 г.
Article in number:
Analysis of the applicability of FinFET transistors for ionizing radiation sensor design
Type of article: overview article
DOI: 10.18127/j19998465-202505-01
UDC: 621.396
Authors:

O.R. Kuzichkin1, A.V. Kurganova2, A.A. Mukhtarova3, A.P. Khersonsky4

1–4 Bauman Moscow State Technical University (Moscow, Russia)
1 oldolkuz@yandex.ru

Abstract:

The paper provides a systematic review of the evolution, operational principles, and modifications of FinFET (Fin Field-Effect Transistor) technology, with a focus on its use in the design of ionizing radiation sensors. The transition from traditional planar MOSFETs to FinFETs has enabled further device scaling, improved electrostatic control, and reduced leakage currents, addressing the fundamental limitations of previous generations. The review highlights historical milestones, structural features of FinFETs, and industrial implementation by leading semiconductor companies. Special attention is paid to modern modifications, such as multi-fin architectures, Gate-All-Around (GAAFET), nanosheets, and vertical and complementary FETs (CFET, VTFET). The principles of using FinFET and its modifications as sensitive elements in RADFET-type dosimeters and ionizing radiation sensors are discussed, including experimental and simulation data. The practical significance of the study lies in systematizing the approaches to improving radiation hardness and sensitivity, and the prospects for further scaling and sensor integration.

Pages: 5-16
For citation

Kuzichkin O.R., Kurganova A.V., Mukhtarova A.A., Khersonsky A.P. Analysis of the Applicability of FinFET Transistors for Ionizing Radiation Sensor Design. Science Intensive Technologies. 2025. V. 26. № 5. P. 5−16. DOI: https://doi.org/ 10.18127/j19998465-202505-01 (in Russian)

References
  1. Perry T. How the Father of FinFETs Helped Save Moore's Law. IEEE Spectrum. 2020. V. 57. № 5. P. 46–51.
  2. Belous M. Ot plavnikov k kol'cam i dalee k KMOP: peripetii tranzistornoj evolyucii. 3DNews, 30.12.2023. URL: https://3dnews.ru/ 1097701 (data obrashcheniya: 02.04.2025) (in Russian).
  3. Planar FET, FinFET i GAAFET – chto eto i v chem razlichie. Komp'yuterra, 13.07.2023. URL: https://www.computerra.ru/ 288311/planar-fet-finfet-i-gaafet-chto-eto-i-v-chem-razlichie/ (data obrashcheniya: 02.04.2025) (in Russian).
  4. Williams C. Intel debuts ‘3D transistors’ with 22nm chip recipe. The Register, 04.05.2011. URL: https://www.theregister.com/ 2011/05/04/intel_press_conference/ (data obrashcheniya: 02.04.2025).
  5. Samsung ob"yavila o nachale massovogo proizvodstva chipov po tekhprocessu 3 nm. IA «Krasnaya Vesna». 30.06.2022. URL: https://rossaprimavera.ru/news/aec24614 (data obrashcheniya: 02.04.2025) (in Russian).
  6. Kao M.-Y., Agarwal H., Liao Y.-H., Cheema S., Dasgupta A., Kushwaha P., Tan A., Salahuddin S., Hu C. Negative capacitance enables FinFET scaling beyond 3nm node. arXiv preprint arXiv:2007.14448. 2020.
  7. Wang R., Sun Z., Liu Y.-Y., Yu Z., Wang Z., Jiang X., Huang R. Understanding hot carrier reliability in FinFET technology from trap-based approach. arXiv preprint arXiv:2112.11753. 2021.
  8. De S., Qiu B.-H., Bu W.-X., Baig M.A., Su C.-J., Lee Y.-J., Lu D. Neuromorphic computing with ferroelectric FinFETs in the presence of temperature, process variation, device aging and flicker noise. arXiv preprint arXiv:2103.13302. 2021.
  9. Bhattacharya A., Roy K. FinFETs: from devices to architectures. International Journal of Computer Applications. 2014. V. 98. № 1.
    P. 1–5.
  10. Djeffal F., Meguellati M. Multigate RADFET Dosimeter for Radioactive Environment Monitoring Applications. In: Yang G.C., Ao S.I., Gelman L. (eds.) IAENG Transactions on Engineering Technologies. Lecture Notes in Electrical Engineering, vol. 229. Springer, Dordrecht, 2013. https://doi.org/10.1007/978-94-007-6190-2_23
  11. Meguellati M., Djeffal F. New Dual-Dielectric Gate All Around (DDGAA) RADFET dosimeter design to improve the radiation sensitivity. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 683. 2012. P. 24–28. https://doi.org/10.1016/j.nima.2012.04.072
  12. Marjanović M., Ilić S.D., Veljković S., Mitrović N., Gurer U., Yilmaz O., Kahraman A., Aktag A., Karacali H., Budak E. et al. The SPICE Modeling of a Radiation Sensor Based on a MOSFET with a Dielectric HfO2/SiO2 Double-Layer. Sensors, 2025, 25, 546. https://doi.org/ 10.3390/s25020546.
  13. Chauhan Y.S., Khandelwal S., Saxena N., Gupta S.K. FinFET Modeling for IC Simulation and Design: Using the BSIM-CMG Standard. Academic Press, 2015.
  14. Hisamoto D., Lee W.C., Kedzierski J., Takeuchi H., Asano K., Kaga T., Toriumi A., Hu C. FinFET–a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Transactions on Electron Devices. 2000. V. 47. № 12. P. 2320–2325.
  15. Colinge J.-P. FinFETs and Other Multi-Gate Transistors. Springer. 2008.
  16. Choi Y.-K., Asano K., Lindert N., Subramanian V., Bokor J., King T.-J., Hu C. Ultrathin-body SOI MOSFET for deep-sub-tenth micron era. IEEE Electron Device Letters. 1999. V. 21. № 5. P. 254–256.
  17. Srinivasan S., Bansal A. et al. Gate-all-around FETs: From technology to system. Microelectronics Reliability. 2022. V. 139. P. 114843.
  18. Lin C.-Y., Yeh C.-H., Su Y.-Y., Wang S.-C. Design and Analysis of GAAFET for Low-Power Applications. IEEE Access. 2020. V. 8. P. 186746–186754.
  19. Lee S.-Y., Wong H.-S.P., Bokor J. Scaling limits of FinFET and GAA FET: A comparative study. IEEE Transactions on Electron Devices. 2019. V. 66. № 10. P. 4273–4279.
  20. Yakovlev I.I. Mnogozatvornye tranzistory FinFET i ih perspektivy razvitiya. Elektronika: nauka, tekhnologiya, biznes. 2023. № 5. S. 40–48 (in Russian).
  21. Wu W., Lee D., Wang X. A Review of FinFET Technology for Nanoscale CMOS. Materials. 2022. V. 15. № 3. P. 1–18.
  22. Romanov A.V., Vorob'ev A.I. Evolyuciya i perspektivy FinFET i GAAFET. Vestnik MIET. 2023. № 1. S. 62–68 (in Russian).
  23. Andreev D.V., Bondarenko G.G., Andreev V.V., Stolyarov A.A. Use of High-Field Electron Injection into Dielectrics to Enhance Functional Capabilities of Radiation MOS Sensors. Sensors. 2020. V. 20. Is.8. P. 2382(1–11). https://doi.org/10.3390/s20082382.
  24. Andreev V.V., Bondarenko G.G., Andreev D.V., Stolyarov A.A. Use of MIS Sensors of Radiation in High-Field Electron Injection Modes. Journal of Contemporary Physics (Armenian Academy of Sciences). 2020. V. 55. № 2. P. 144–150. https://doi.org/10.3103/ S106833722002005X.
  25. Andreev D.V., Bondarenko G.G., Andreev V.V. Change in the Charge State of MOS Structures with a Radiation-Induced Charge under High-Field Injection of Electrons. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2023. V.17. № 1. P. 48–53. https://doi.org/10.1134/S1027451023010056.
Date of receipt: 17.06.2025
Approved after review: 01.07.2025
Accepted for publication: 02.09.2025