I.A. Prokopenkov1, A.S. Garkovenko2, V.O. Volosenkov3, M.V. Shiryaev4, L.M. Zheleznyak5, Yu.S. Asadova6
1,2 Military Academy of Military Air Defense of the Armed Forces of the Russian Federation (Smolensk, Russia)
3 JSC “Concern “Marines-Agat” (Moscow, Russia)
4–6 Moscow Technological University (MIREA) (Moscow, Russia)
1 prokopenkoff.ivan@yandex.ru, 2 garkovenko@mail.ru, 3 vvolosenkov @yandex.ru
The development of information technology has led to an increase in the amount of data exchanged by complex systems. The article discusses the problems that arise when solving the tasks of evaluating organizational and technical systems. Currently, existing data processing technologies do not allow for timely and qualitative analysis to form a system assessment. The specific features of using machine learning models based on intelligent data analysis of the subject area are considered. An approach is proposed that makes it possible to quickly evaluate complex systems based on data mining. Timely assessment of the effectiveness of complex systems will allow for prompt management decisions.
Prokopenkov I.A., Garkovenko A.S., Volosenkov V.O., Shiryaev M.V., Zheleznyak L.M., Asadova Yu.S. Machine learning models for solving the problem of evaluating organizational and technical systems. Science Intensive Technologies. 2025. V. 26. № 4. P. 50−59. DOI: https://doi.org/ 10.18127/j19998465-202504-06 (in Russian)
- Gavrilova T.A., Horoshevskij V.F. Bazy znanij intellektual'nyh sistem. SPb.: Piter. 2000. 384 s. (in Russian).
- Yudin V.N., Karpov L.E., Vatazin A.V. Metody intellektual'nogo analiza dannyh i vyvoda po precedentam v programmnoj sisteme podderzhki vrachebnyh reshenij. Al'manah klinicheskoj mediciny. 2008. T. 17. Ch. 1. S. 266–269 (in Russian).
- Borisov V.V., Fedulov A.S., Zernov M.M. Osnovy nechetkoj matematiki. Chast' 5. Osnovy gibridizacii nechetkih modelej: Uchebnoe posobie dlya vuzov. M.: Goryachaya liniya – Telekom. 2016. 105 s. (in Russian).
- Prokopenkov I.A., Kotov D.V., Molyavko A.A. Sposob formirovaniya obobshchennyh precedentnyh reshenij na osnove kompozicionnogo ontologicheskogo podhoda. Sbornik nauchnyh trudov VIII Mezhdunar. nauch.-prakt. konf. «Nechetkie sistemy, myagkie vychisleniya i intellektual'nye tekhnologii». Smolensk: Universum. 2020. Ch. II. S. 128–135 (in Russian).

