350 rub
Journal Science Intensive Technologies №4 for 2025 г.
Article in number:
Model of the radar observation system for the geostationary orbit region based on the very long baseline radio interferometer with an active illumination source
Type of article: scientific article
DOI: https://doi.org/10.18127/j19998465-202504-03
UDC: 621.396.96, УДК 629.7.05
Authors:

T.V. Yaskov1, A.A. Paliutin2, V.V. Makarenkov3, M.V. Zherikhova4, N.A. Kupriyanov5

1–4 A.F. Mozhaisky Military Space Academy (St. Pereburg, Russia)
5 Krasnodar Higher Military Aviation School of Pilots n.a. Hero of the Soviet Union A.K. Serov (Krasnodar, Russia)
1 Ganibal.16@yandex.ru, 2 vka@mil.ru, 3 makar8722@mail.ru, 4 zherihova.mar@yandex.ru, 5 sektor-ussr@rambler.ru

Abstract:

The intensive development of the space industry has led to the significant increase in the number of artificial Earth satellites (AES) across all operational space zones, including the geostationary orbit (GSO) region. Concurrently, the accumulation of space debris caused by the disintegration of launch vehicles and AES, combined with its prolonged presence in the GSO region, continuously raises the probability of hazardous situations. These factors necessitate the implementation of continuous monitoring systems capable of high-precision coordinate measurements of space objects (SO). The operational challenges of continuous GSO monitoring systems drive the development of new methods for obtaining SO coordinate data. The promising approach involves radar systems based on very long baseline interferometry (VLBI), which enables high-precision SO coordinate measurements. Of particular interest is the use of active illumination sources (AIS) in VLBI systems, which improve SO tracking accuracy by accounting for additional spatial and perturbing factors. However, field testing such systems requires substantial time and resources. Consequently, evaluating the accuracy of GSO satellite coordinate measurements through simulation modeling—replicating VLBI systems with AIS in the controlled virtual environment—has become the critical task. Goaldevelopment of the model for the distributed radar observation system for the GSO region, based on the very long baseline interferometer with AIS. The study presents the model of the distributed radar system operating on VLBI principles with AIS, featuring the procedure for determining SO coordinates in the GSO region that accounts for VLBI system positioning accuracy and synchronization, structural configurations of observed objects, and atmospheric signal propagation errors. The study demonstrates that integrating AIS into VLBI systems enhances SO tracking accuracy in the GSO region by incorporating spatial and perturbing factors. Active radar-band illumination eliminates limitations of optoelectronic systems (e.g., weather and lighting dependencies), enabling continuous SO monitoring. Implementing active radar principles in VLBI systems via AIS extends classical radiointerferometry capabilities, allowing tracking of objects with unknown emission parameters.

Pages: 26-34
For citation

Yaskov T.V., Paliutin A.A., Makarenkov V.V., Zherikhova M.V., Kupriyanov N.A. Model of the radar observation system for the geostationary orbit region based on the very long baseline radio interferometer with an active illumination source. Science Intensive Technologies. 2025. V. 26. № 4. P. 26−34. DOI: https://doi.org/ 10.18127/j19998465-202504-03 (in Russian)

References
  1. Vargauzin V.A., Kistanov P.A., Shcherbinina E.A. Passivnye metody opredeleniya koordinat sputnikov na geostacionarnoj orbite. Nauchno-tekhnicheskaya konferenciya Sankt-Peterburgskogo NTO RES im. A.S. Popova, posvyashchennaya Dnyu radio: materialy konferencii. SPb.: SPbGETU «LETI». 2021. № 1 (76). S. 50–53 (in Russian).
  2. Logunov S.V., Rogov D.A., Chistyakov S.V. Kriterial'nye usloviya vozmozhnosti nablyudeniya geostacionarnyh sputnikov svyazi nazemnymi opticheskimi sredstvami. Vestnik vozdushno-kosmicheskoj oborony. 2017. № 1(13). S. 44–48 (in Russian).
  3. Zhukov A.O., Ivanov K.A., Dugin N.A. Bondareva M.K., Nechaeva M.B., Okunev E.V., Zin'kovskij B.M. Perspektivy razvitiya sistem slozheniya signalov na baze sovremennyh tekhnologij RSDB. Voprosy kontrolya hozyajstvennoj deyatel'nosti i finansovogo audita, nacional'noj bezopasnosti, sistemnogo analiza i upravleniya: materialy VII Vseros. nauch.-prakt. konf. Moskva. 29 dekabrya 2021 goda. M.: Federal'noe gosudarstvennoe byudzhetnoe nauchnoe uchrezhdenie «Ekspertno-analiticheskij centr». 2022. S. 445–448 (in Russian).
  4. Sovetov B.Ya., Yakovlev S.A. Modelirovanie sistem: uchebnik dlya akademicheskogo bakalavriata. Izd. 7-e. M.: Yurajt. 2015. 343 s. (in Russian).
  5. Zharov V.E. Osnovy radioastrometrii. M.: Fizicheskij fakul'tet MGU. 2011. 280 s. (in Russian).
  6. Tomson A.R., Moran D.M., Svenson D.U. Interferometriya i sintez v radioastronomii. Izd. 2-e. M.: Fizmatlit. 2003. 624 s. (in Russian).
  7. Richards M.A., Melvin W. L. Principles of Modern Radar: Advanced Techniques. 2nd ed. Raleigh, NC: SciTech Publishing. 2022. 850 p.
  8. Oppenheim A.V., Schafer R.W. Discrete-Time Signal Processing. 4th ed. London: Pearson. 2021. 1120 p.
  9. Syuzev V.V. Osnovy teorii cifrovoj obrabotki signalov: Ucheb. posobie. M.: RTSoft. 2014. 752 s. (in Russian).
  10. Kupriyanov N.A., Kurakin S.Z., Porechenskaya L.A. Primenenie nejrosetevyh metodov dlya obrabotki radiolokacionnoj informacii v slozhnyh geliogeofizicheskih usloviyah. Problemy voenno-prikladnoj geofiziki i kontrolya sostoyaniya prirodnoj sredy: Materialy VI Vserossijskoj nauchnoj konferencii, Sankt-Peterburg, 16–18 sentyabrya 2020 goda. SPb.: Voenno-kosmicheskaya akademiya im. A.F. Mozhajskogo. 2020. S. 153–158 (in Russian).
  11. Konnikova V.K. Prakticheskaya radioastronomiya: Ucheb. posobie. M.: Izd-vo Mosk. un-ta. 2011. 304 s. (in Russian).
  12. Bourda G., Charlot P. VLBI for Geodesy and Astrometry. Cham: Springer. 2023. 315 p.
  13. Gantmaher F.R. Teoriya matric. Izd. 5-e. M.: Fizmatlit. 2010. 560 s. (in Russian).
  14. Valajtite A.A. Analiz tochnosti ocenki zenitnyh troposfernyh zaderzhek, poluchennyh s pomoshch'yu metoda vysokotochnogo absolyutnogo mestoopredeleniya. Trudy MAI. 2020. Vyp. 110. S. 1–17 (in Russian).
  15. Tyapkin V.N., Garin E.N. Metody opredeleniya navigacionnyh parametrov podvizhnyh sredstv s ispol'zovaniem sputnikovoj radionavigacionnoj sistemy GLONASS: Monografiya. Krasnoyarsk: Sib. feder. un-t. 2012. 260 s. (in Russian).
  16. Leick A., Rapoport L., Tatarnikov D. GPS Satellite Surveying. Wiley. 2015. 840 p.
Date of receipt: 21.04.2025
Approved after review: 06.06.2025
Accepted for publication: 20.07.2025