350 rub
Journal Science Intensive Technologies №3 for 2025 г.
Article in number:
Results of modeling the dynamics of robots in Matlab and SolidWorks environments using the example of an underwater robot
Type of article: scientific article
DOI: https://doi.org/10.18127/j19998465-202503-05
UDC: 681.5
Authors:

Z.M. Moussa1, A.S. Mayya2

1 Moscow State Technical University "STANKIN" (Moscow, Russia)
2 Saint Petersburg Electrotechnical University "LETI" n. a. V.I. Ulyanov (Lenin) (Saint Petersburg, Russia))
1 moussazein1@gmail.com, 2 alimayya1357@gmail.com

Abstract:

Modern technologies for modeling robot dynamics play a key role in the development and optimization of their designs, especially in difficult environments such as underwater environments.

Objective – dynamic modeling research for real-time robot control in an underwater vehicle.

The article presents models based on the Newton-Euler method for dynamics. The simulation was performed in MATLAB and SolidWorks, which allowed us to confirm the accuracy of the calculations.

The proposed approaches are applicable to automation tasks in ophthalmology and industrial robotics and can serve as a foundation for further research in adaptive control.

Pages: 41-48
For citation

Moussa Z.M., Mayya A.S. Results of modeling the dynamics of robots in Matlab and SolidWorks environments using the example of an underwater robot. Science Intensive Technologies. 2025. V. 26. № 3. P. 41−48. DOI: https://doi.org/ 10.18127/j19998465-202503-05
(in Russian)

References
  1. Antonelli G. Podvodnye roboty. Springer Tracts in Advanced Robotics. Izd. 2-e. Springer, 2006. 380 s. (in Russian)
  2. Fossen T.I. Rukovodstvo i upravlenie okeanicheskimi sudami. Chichester, Velikobritaniya: John Wiley & Sons. 1994. 320 s. (in Russian)
  3. Farivarnedzhad H., Moosavian S.A. Mnozhestvennyj impedansnyj kontrol' dlya manipulyacii ob"ektami podvodnym transportnym sredstvom-manipulyatorom s dvumya rukami. Ocean Engineering. 2014. V. 89. P. 82–98. DOI: 10.1016/j.oceaneng.2014.06.032 (in Russian).
  4. Kolodzejchik V. Predvaritel'noe issledovanie gidrodinamicheskoj nagruzki na podvodnyj robot-manipulyator. Journal of Automation, Mobile Robotics & Intelligent Systems. 2015. V. 9. № 4. DOI: 10.14313/JAMRIS 4-2015/28 (in Russian).
  5. MakLejn T.V., Rok S.M. Razrabotka i eksperimental'naya validaciya gidrodinamicheskoj modeli podvodnogo manipulyatora. The International Journal of Robotics Research. 1988. V. 17. P. 748–759 (in Russian).
  6. Kork P. Robotic Toolbox dlya Matlab. Vyp. 10. Noyabr' 2018. 150 s. (in Russian).
  7. Rivera K., Hinchi M. Gidrodinamicheskie nagruzki na podvodnye roboty. Ocean Engineering. 1999. V. 26. № 8. P. 805–812. DOI: 10.1016/S0029-8018(98)00031-6 (in Russian).
  8. Roj M. Proektirovanie i izgotovlenie legkogo robotizirovannogo manipulyatora. Universitet Makgilla, kafedra mashinostroeniya. 1997. 200 s. (in Russian).
  9. Choj H., Kim D., Dzhu J., Ha Dzh. Proektirovanie i upravlenie vodonepronicaemoj robotizirovannoj rukoj s primeneniem kompensatora sily tyazhesti. Korejskij morskoj i okeanskij universitet, kafedra mashinostroeniya. 2014. 180 s. (in Russian).
  10. Rahman I., Suboh S., Arshad M. Teoriya i voprosy proektirovaniya podvodnogo manipulyatora. Universitet Sains Malajziya, kafedra inzhenerii i mekhatroniki. 2007. 150 s. (in Russian).
Date of receipt: 13.02.2025
Approved after review: 27.02.2025
Accepted for publication: 29.04.25