350 rub
Journal Science Intensive Technologies №2 for 2025 г.
Article in number:
Analysis of the features of modeling controlled systems using cognitive maps
Type of article: scientific article
DOI: https://doi.org/10.18127/j19998465-202502-05
UDC: 004.81, 004.94
Authors:

V.V. Krasilnikov1

1 Bunin Yelets State University (Yelets, Russia)
1 slava.krasilnikov99@gmail.com

Abstract:

In modern engineering, the development of effective management strategies for complex technical facilities requires the integration of qualitative and quantitative parameters. Traditional mathematical models are not always suitable for systems with a high degree of uncertainty, complex relationships, and vague expertise. Cognitive maps are a promising tool for formalizing knowledge and modeling system behavior depending on various factors. The purpose of the article is to develop an approach to constructing cognitive maps of a controlled technical system based on simulation data using fuzzy logic to determine the weighting coefficients of relationships between concepts. An algorithm for constructing a cognitive map based on the analysis of quantitative simulation data is proposed. The algorithm includes the stages of defining concepts, conducting simulation modeling, collecting data, determining the relationships between concepts, and calculating weighting coefficients using fuzzy logic. The use of fuzzy logic made it possible to formalize the relationship between concepts, taking into account uncertainty. An example of constructing a cognitive map for the injection molding machine temperature control system is considered. The results can be used to solve cognitive modeling problems, technical systems management problems, and uncertainty-based decision support system development problems.

Pages: 53-58
For citation

Krasilnikov V.V. Analysis of the features of modeling controlled systems using cognitive maps. Science Intensive Technologies. 2025.
V. 26. № 2. P. 53−58. DOI: https://doi.org/ 10.18127/j19998465-202502-05 (in Russian)

References
  1. Gorelova G.V. Kognitivnoe modelirovanie slozhnyh sistem: sostoyanie i perspektivy. Sistemnyj analiz v proektirovanii i upravlenii. 2021. T. 25. № 1. S. 224–248 (in Russian).
  2. Druzhinina O.V., Masina O.N., Igonina E.V. Primenenie metodov iskusstvennogo intellekta i kognitivnyh tekhnologij v zadachah modelirovaniya dinamicheskih sistem. Sovremennye informacionnye tekhnologii i IT-obrazovanie. 2022. T. 18. № 1. S. 83–97 (in Russian).
  3. Petuhova A.V., Kovalenko A.V., Teunaev D.M. Obzor dinamicheskih svojstv i algoritmov obucheniya nechetkih kognitivnyh kart. Politematicheskij setevoj elektronnyj nauchnyj zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta. 2021. № 167. S. 43–74 (in Russian).
  4. Rykov Yu.G. Tekhnologiya ispol'zovaniya nechetkih kognitivnyh kart s matematicheskoj tochki zreniya. Preprinty Instituta prikladnoj matematiki im. M.V. Keldysha RAN. 2021. S. 73–22 (in Russian).
  5. Zagranovskaya A.V. Postroenie nechetkoj kognitivnoj karty s ispol'zovaniem metodov mashinnogo obucheniya. Mezhdunarodnyj nauchno-issledovatel'skij zhurnal. 2022. № 9 (123). S. 21 (in Russian).
  6. Rotshtejn A.P. Nechetkie kognitivnye karty v analize nadezhnosti sistem. Nadezhnost'. 2019. T. 19. № 4. S. 24–31 (in Russian).
  7. Andreeva O.N. Analiz dinamiki sostoyaniya slozhnyh sistem na osnove nechetkih kognitivnyh modelej. Naukoemkie tekhnologii. 2021. T. 22. № 1. S. 29–34 (in Russian).
  8. Firsova, A., Gorelova, G., Makarova, E.L., Makarova, E.A., Chernyshova, G. Simulation Cognitive Modeling Approach to the Regional Sustainable Complex System Development for Improving Quality of Life. Mathematics. 2023. V. 11. P. 4369.
  9. Holt D.V., Osman M. Approaches to cognitive modeling in dynamic systems control. Frontiers in Psychology. 2017. V. 8. P. 2032.
  10. Karatzinis G.D., Boutalis Y.S. A Review Study of Fuzzy Cognitive Maps in Engineering: Applications, Insights, and Future Directions. Eng. 2025. V. 6. № 2. P. 37.
  11. Tatarkanov A.A., Alexandrov I.A., Chervjakov L.M., Karlova T.V. A fuzzy approach to the synthesis of cognitive maps for modeling decision making in complex systems. Emerging Science Journal. 2022. V. 6. № 2. P. 368–381.
  12. Kim T.A., Areshchenkov D.A., Sotnikov A.A. Issledovanie sredstv imitacionnogo modelirovaniya mnogomernyh signalov v sistemah iskusstvennogo intellekta real'nogo vremeni. Sovremennye naukoemkie tekhnologii. 2022. № 10 (2). S. 218–225 (in Russian).
  13. Rykov Yu.G. K voprosu razvitiya gibridnogo analiticheskogo podhoda k modelirovaniyu slozhnyh sistem, soderzhashchih kak slabo strukturirovannye, tak i horosho strukturirovannye podsistemy Informacionnye i matematicheskie tekhnologii v nauke i upravlenii. Informacionnye i matematicheskie tekhnologii v nauke i upravlenii. 2022. № 4 (28). S. 234–247 (in Russian).
Date of receipt: 03.09.2024
Approved after review: 11.09.2024
Accepted for publication: 20.09.2024