350 rub
Journal Science Intensive Technologies №2 for 2025 г.
Article in number:
Mathematical model of magnetometric local navigation system based on alternating magnetic field
Type of article: scientific article
DOI: https://doi.org/10.18127/j19998465-202502-04
UDC: 623.74
Authors:

A.M. Ageev1, A.V. Mandrykin2

1,2 Military Educational and Scientific Center of the Air Force “Air Force Academy named after Professor N.E. Zhukovsky and Yu.A. Gagarin” (Voronezh, Russia)
1 ageev_bbc@mail.ru, 2 alex.mandrykin@yandex.ru

Abstract:

Against the background of rapidly developing electronic warfare systems there is a need to create alternative navigation systems that provide specified accuracy characteristics at the landing stage of unmanned aerial vehicles. It is proposed to use magnetometric local navigation systems as such systems. When creating such systems, it is necessary to take into account the specifics of use on unmanned aerial vehicles, namely, design parameters and noise from onboard equipment. To take these factors into account and ensure the specified accuracy characteristics, it is necessary to develop a mathematical model of a magnetometric local navigation system.

Objective – development of a mathematical model of a magnetometric local navigation system that provides calculation of coordinates with specified accuracy characteristics at the landing stage of an unmanned aerial vehicle.

Results. A mathematical model has been developed that is based on the model of an ideal dipole made in the form of a three-solenoid magnetic system and the calculation of coordinates of points in space taking into account the amplitudes and phases of signals of different frequencies from three mutually orthogonal cores of an alternating magnetic field source. The mathematical model is distinguished by the fact that the calculation of coordinates is performed based on the signal of one operating frequency of the magnetic field and the synchronization signal at the frequency of the subharmonic of the main navigation signal, while the calculation of errors of the magnetometric system is performed based on the sensitivity threshold of the sensors.

The practical significance lies in ensuring the specified accuracy of determining the coordinates of an unmanned aerial vehicle at the landing stage, corresponding to Category I according to the requirements of the radiotechnical plan of the Russian Federation and Category II according to the requirements of ICAO.

Pages: 41-52
For citation

Ageev A.M., Mandrykin A.V. Mathematical model of magnetometric local navigation system based on alternating magnetic field. Science Intensive Technologies. 2025. V. 26. № 2. P. 41−52. DOI: https://doi.org/ 10.18127/j19998465-202502-04 (in Russian)

References
  1. Dzhandzhgava G.I., Gerasimov G.I., Avgustov L.I. Navigaciya i navedenie po prostranstvennym geofizicheskim polyam. Izv. YuFU. 2013. № 3. S. 74–84 (in Russian).
  2. Kiselev S.K. Korrelyacionno-ekstremal'naya navigaciya po polyu magnitnyh anomalij protyazhennyh orientirov. Izv. RAN. Teoriya i sistemy upravleniya. 1997. № 6. S. 56–61 (in Russian).
  3. Golev I.M., Sergeev A.V. Lokal'naya sistema navigacii s ispol'zovaniem nizkochastotnogo magnitnogo polya. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta. 2019. T. 15. № 5. S. 88–94 (in Russian).
  4. Radionavigacionnyj plan Rossijskoj Federacii. Prikaz Minpromtorga Rossii № 2123. 2015. 141 s. (in Russian).
  5. Golev I.M., Ageev A.M., Ugryumov R.B., Mandrykin A.V., Zaenceva T.I. Vozmozhnosti lokal'noj navigacii na osnove iskusstvennyh magnitnyh polej. Nauchno-tekhnicheskij zhurnal po problemam navigacii «Novosti navigacii». 2021. № 1. S. 12–19 (in Russian).
  6. Golev I.M., Ugryumov R.B., Zaenceva T.I., Mandrykin A.V. Magnitometricheskaya sistema lokal'noj navigacii s nejrosetevoj obrabotkoj informacii. Vozdushno-kosmicheskie sily. Teoriya i praktika. 2021. № 18. S. 99–107. [Elektronnyj resurs]. URL: https://vva.mil.ru/upload/site21/OeVUU0CNQb.pdf (data obrashcheniya 20.11.2024) (in Russian).
  7. Shuang Song, Chao Hu, Baopu Li, Xiaoxiao Li, Max Q.-H. Meng. An electromagnetic localization and orientation method based on rotating magnetic dipole. IEEE Transactions on magnetics. 2013. V. 49. № 3. P. 1274–1277.
  8. Starodubcev Yu.N., Belozerov V.Ya. Magnitnye svojstva amorfnyh i nanokristallicheskih splavov. Ekaterinburg: Ural. 2002. 384 s. (in Russian).
  9. Irodov I.E. Elektromagnetizm. Osnovnye zakony. Izd. 9-e. M.: BINOM. Laboratoriya znanij. 2014. 319 s. [Elektronnyj resurs]. URL: https://techlibrary.ru/b/2q1r1p1e1p1c_2q.2m._3l1m1f1l1t1r1p1n1a1d1o1f1t1j1i1n._2w1s1o1p1c1o2c1f_1i1a1l1p1o2c._2014.pdf (data obrashche­niya 20.02.2025) (in Russian).
  10. Golev I.M., Nikitina E.A., Zaenceva T.I. Magnitometricheskie datchiki dlya sistem navigacii. Datchiki i sistemy. 2019. № 9. S. 22–27 (in Russian).
  11. Golev I.M., Zaenceva T.I., Ugryumov R.B., Mandrykin A.V. Sistemy lokal'noj magnitometricheskoj aeronavigacii s razlichnymi istochnikami peremennogo magnitnogo polya. Nauchno-tekhnicheskij zhurnal po problemam navigacii «Novosti navigacii». 2023. S. 5–13 (in Russian).
  12. Malkov N.A., Pudovkin A.P. Elektromagnitnaya sovmestimost' radioelektronnyh sredstv. Tambov: Tamb. gos. tekhn. un-ta. 2007. 88 s. (in Russian).
  13. Patent RU 2789733.Ustrojstvo magnitometricheskoj lokal'noj navigacii. I.M. Golev, V.V. Belyaev, R.B. Ugryumov, T.I. Zaenceva, A.V. Mandrykin. 2023 (in Russian).
  14. Bromberg P.V. Matrichnye metody v teorii linejnogo i impul'snogo regulirovaniya. M.: Nauka. 1967. 324 s. (in Russian).
  15. Golev I.M., Ageev A.M., Mandrykin A.V., Tivikov K.A. Metodika nastrojki istochnika vrashchayushchegosya magnitnogo polya lokal'nyh magnitometricheskih navigacionnyh sistem. Vozdushno-kosmicheskie sily. Teoriya i praktika. 2024. № 32. S. 240–249. [Elektronnyj resurs]. URL: https://vva.mil.ru/upload/site21/oJjcjc1SPQ.pdf (data obrashcheniya 13.01.2025) (in Russian).
  16. Golev I.M., Zaenceva T.I., Zhelonkin M.V., Popov A.S., Shtan'kova N.V. Analiz pogreshnostej opredeleniya linejnyh i uglovyh koordinat magnitometricheskoj sistemy navigacii bespilotnogo letatel'nogo apparata. TRANSPORT: nauka, tekhnika, upravlenie. 2020. № 12. S. 3–8 (in Russian).
Date of receipt: 10.02.2025
Approved after review: 19.02.2025
Accepted for publication: 20.03.2025