350 rub
Journal Science Intensive Technologies №2 for 2025 г.
Article in number:
Methodology for determining the principal point of optical system
Type of article: scientific article
DOI: https://doi.org/10.18127/j19998465-202502-02
UDC: 623.746.4-519
Authors:

D.S. Mongush1

1 MESC of Air Forces N.Е. Zhukоvsky and Yu.А. Gаgаrin Air Force Academy (Vоrоnеzh, Russia)
1 denzin.mongush@mail.ru

Abstract:

The tasks of eliminating lens distortion in digital cameras are aimed at improving their measurement capabilities. The use of optoelectronic systems as precision navigational parameter measurement tools on unmanned aerial vehicles (UAVs) requires accounting for distortion, as known algorithmic methods for compensating optical distortions do not provide the necessary level of correction, which limits the accuracy of optical measurements. There are design-based methods for compensating aberrations to acceptable limits, but their application significantly increases the cost of optical systems.

In most existing methods for compensating camera distortion, it is commonly assumed that the principal point of the image is known and coincides with the geometric center of the image sensor. However, this assumption does not always reflect the real situation, as the principal point may be offset from the center of the image sensor due to manufacturing peculiarities, thermal deformations, or inaccuracies in the assembly of the optical system. This offset leads to additional errors in coordinate determination and image distortions, which is particularly critical for tasks requiring high precision, such as UAV navigation or photogrammetry. Accounting for the actual position of the principal point of the optical system allows for improved accuracy in describing the distortion model, reduces the time required for compensation, and significantly enhances the accuracy of coordinate measurements.

Purpose – to improve the measurement accuracy of optoelectronic systems in UAV navigation tasks by developing a methodology for determining the principal point of the optical system.

A methodology for determining the principal point of the image to compensate for camera distortion has been developed. This methodology differs from existing distortion correction methods by determining the principal point of the optical system on the image sensor. This approach ensures improved accuracy in coordinate determination for navigation systems that incorporate optoelectronic systems.

The development of recommendations for enhancing the algorithmic and methodological support of UAV navigation systems, enabling the required accuracy in coordinate determination, increased autonomy, noise immunity, and safety during the execution of specialized tasks.

Pages: 20-27
For citation

Mongush D.S. Methodology for determining the principal point of optical system. Science Intensive Technologies. 2025. V. 26. № 2.
P. 20−27. DOI: https://doi.org/ 10.18127/j19998465-202502-02 (in Russian)

References
  1. Stashkevich S.P., Kabanov V. A., Husnutdinov T.D. Ispol'zovanie bespilotnyh letatel'nyh apparatov v voennyh i grazhdanskih celyah. Aktual'nye problemy aviacii i kosmonavtiki. Krasnoyarsk: SOLON-Press. 2023. S. 171–173 (in Russian).
  2. Fedoseeva N.A., Zagvozdkin M.V. Perspektivnye oblasti primeneniya bespilotnyh letatel'nyh apparatov. Nauchnyj zhurnal. 2017. № 9 (22). URL: https://cyberleninka.ru/article/n/perspektivnye-oblasti-primeneniya-bespilotnyh-letatelnyh-apparatov (data obrashcheniya: 15.03.2025) (in Russian).
  3. Karchaga E.S. Kamera-obskura. Istoriya fotografii. Molodoj uchenyj. 2018. № 32 (218). S. 69–71 (in Russian).
  4. Kunina I.A., Gladilin S.A., Nikolaev D.P. Slepaya kompensaciya radial'noj distorsii na odinochnom izobrazhenii s ispol'zovaniem bystrogo preobrazovaniya Hafa. Komp'yuternaya optika. 2016. T. 40. № 3. S. 395–403 (in Russian).
  5. Yu W. et al. Research of improved Zhang’s calibration method. 2017 Chinese Automation Congress (CAC). IEEE. 2017. P. 1423–1427.
  6. Zhao Y., Wang X., Yang F. Method of camera calibration using concentric circles and lines through their centres. Advances in Multimedia. 2018. V. 2018.
  7. Landsberg G.S. Optika: uchebnoe posobie dlya vuzov. Izd. 6-e, stereotip. M.: Fizmatlit. 2003. 848 s.
  8. Glagolev V.M. Opisanie i programmnoe ustranenie distorsii ob"ektivov. Izv. TulGU. Ser.: Tekhnicheskie nauki. 2017. Vyp. 9. Ch. 2. S. 188–194 (in Russian).
  9. Bondarev V.G., Procenko V.V., Pikalov A.S. Sravnitel'nyj analiz vliyaniya distorsii ob"ektiva na parametry sistemy tekhnicheskogo zreniya. Sostoyanie i perspektivy razvitiya sovremennoj nauki po napravleniyu «Tekhnicheskoe zrenie i raspoznavanie obrazov»: sbornik tezisov dokladov nauch.-tekhn. konfer. 2019. S. 66–73 (in Russian).
  10. Tekhnologiya fotogrammetricheskoj kalibrovki cifrovyh kamer. URL: http://photogrammetria.ru/old/services (data obrashcheniya: 12.01.2025) (in Russian).
  11. Conrady A.E. Decentred lens-systems. Monthly notices of the royal astronomical society. 1919. V. 79. № 5. P. 384.
  12. Patent 2790055 (RF), MPK51 G 01M 11/02. Sposob kompensacii distorsii ob"ektiva. A.V. Batukov, V.G. Bondarev, S.V. Ippolitov, D.V. Lopatkin, V.V. Procenko, O.N. Rogovenko. 2022 (in Russian).
Date of receipt: 17.02.2025
Approved after review: 04.03.2025
Accepted for publication: 20.03.2025