350 rub
Journal Science Intensive Technologies №6 for 2024 г.
Article in number:
Promising non-invasive hemoglobinometers
Type of article: overview article
DOI: 10.18127/j19998465-202406-08
UDC: 615.47
Authors:

G.P. Nikolsky1, N.A. Shumakova2, I.A. Sidorov3, V.D. Shashurin4, V.U. Leushin5, V.K. Pushkarev6, A.G. Gudkov7

1,3–5,7 Bauman Moscow State Technical University (Moscow, Russia)
2 North-Western State Medical University n. a. I.I. Mechnikov (St. Petersburg, Russia)
6 Ural Federal University n. a. the First President of Russia B. N. Yeltsin (Ekaterinburg, Russia)
7 Ltd. Hyperion (Moscow, Russia)
1 gnp2002@mail.ru, 2 natashashumakova87@gmail.com, 3 igorasidorov@yandex.ru, 4 schashurin@bmstu.ru, 5 ra3bu@yandex.ru, 6 vvprev@gmail.com, 7 profgudkov@gmail.com

Abstract:

This paper provides an overview of existing methods for diagnosing pathological conditions of hematopoiesis with an emphasis on quantifying the level of hemoglobin in the blood. Both traditional invasive methods such as photometry and spectrometry and modern non-invasive approaches are considered. In particular, attention is paid to the use of portable devices and the integration of smartphones to measure hemoglobin levels, which is a promising direction for the development of diagnostics. The advantages and disadvantages of various technologies are analyzed, including accuracy, accessibility, patient convenience and cost-effectiveness. To analyze the available methods and devices for the quantitative determination of hemoglobin content in the blood. The analysis of existing models of hemoglobinometers is given, their characteristics and physical principles of operation are presented. The advantages and disadvantages of the above devices are revealed. The trends and vectors of the development of the field of measuring hemoglobin levels in the blood by invasive and non-invasive methods are presented.

Pages: 53-59
For citation

Nikolsky G.P., Shumakova N.A., Sidorov I.A., Shashurin V.D., Leushin V.Yu., Pushkarev V.K., Gudkov A.G. Promising non-invasive hemoglobinometers. Science Intensive Technologies. 2024. V. 25. № 6. P. 53−59. DOI: https://doi.org/10.18127/j19998465-202406-08 (in Russian)

References
  1. Zhou B., Bentham J., Di Cesare M., Bixby H., Danaei G., Cowan M. J., Paciorek C. J., Singh G., Hajifathalian K., Bennett J. E. et al. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19· 1 million participants. The Lancet. 2017. V. 389. № 10064. P. 37–55.
  2. Saeedi P., Petersohn I., Salpea P., Malanda B., Karuranga S., Unwin N., Olagiuri S., Guariguata L., Motala A. A., Ogurtsova K. et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas. Diabetes research and clinical practice, 2019. V. 157, P. 107843.
  3. Worldwide prevalence of anaemia 1993–2005: WHO global database on anaemia. Geneva, World Health Organization, 2008. URL: https://apps.who.int/iris/handle/10665/43894.
  4. https://34.rospotrebnadzor.ru/content/204/14290/ (Дата обращения 20.05.2024).
  5. Serpovidno-kletochnaya anemiya – Gematologiya i onkologiya: Spravochnik MSD Professional'naya versiya (msdmanuals.com) (in Russian).
  6. https://meduniver.com/Medical/gematologia/gemoglobin_krovi.html (Дата обращения 08.09.2024)
  7. Wang E.J., Li W., Hawkins D., Gernsheimer T., Norby-Slycord C., Patel S. N. Hemaapp: noninvasive blood screening of hemoglobin using smartphone cameras. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM. 2016. P. 593–604.
  8. Wang E.J., Li W., Zhu J., Rana R., Patel S.N. Noninvasive hemoglobin measurement using unmodified smartphone camera and white flash. In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE. 2017. P. 2333–2336.
  9. W. information, Noninvasive Hemoglobin Monitor, SMART-Hb, retrieved in May 2024 from http://tech4lifeenterprises.com/smart-hb/.
  10. W. information, SpHb: Continuous SpHb provides real-time visibility to changes, or lack of changes, in hemoglobin between invasive blood samples, retrieved in May 2024 from https://professional.masimo.com/technology/co-oximetry/sphb/.
  11. https://www.technomedica.ru/minihem-540 (Дата обращения 12.09.2024)
  12. https://medtech30.ru/gemoglobinometr-fotometricheskij-minigem-540/ (Дата обращения 12.09.2024)
  13. Crystal D. Karakochuk, Food, Nutrition and Health, University of British Columbia, 216–2205 East Mall. Vancouver. BC V6T 1Z4, Canada. crystal.karakochuk@ubc.ca
  14. https://www.hemocue.com/en/products/hematology/hemocue-hb-201plus-system/ (Дата обращения 12.09.2024)
  15. Jahr J.S., Lurie F., Driessen B., Davis J.A., Gosselin R., Gunther R. A. Еhe hemocue®, a point of care b-hemoglobin photometer, measures hemoglobin concentrations accurately when mixedin vitro with canine plasma and three hemoglobin-based oxygen carriers (hboc). Canadian Journal of Anesthesia. 2002. V. 49. № 3. P. 243.
  16. Nkrumah B., Nguah S.B., Sarpong N., Dekker D., Idriss A., May J., Adu-Sarkodie Y. Hemoglobin estimation by the hemocue® portable hemoglobin photometer in a resource poor setting. BMC clinical pathology. 2011. V. 11. № 1. P. 5.
  17. Bell S., Sweeting M., Ramond A., Chung R., Kaptoge S., Walker M., Bolton T., Sambrook J., Moore C., McMahon A. et al. Comparison of four methods to measure haemoglobin concentrations in whole blood donors (compare): A diagnostic accuracy study. Transfusion Medicine. 2021. V. 31. № 2. P. 94–103.
  18. Kim M.J., Park Q., Kim M.H., Shin J.W., Kim H.O. Comparison of the accuracy of noninvasive hemoglobin sensor (nbm-200) and portable hemoglobinometer (hemocue) with an automated hematology analyzer (lh500) in blood donor screening. Annals of laboratory medicine. 2013. V. 33. № 4. P. 261–267.
  19. Lamhaut L., Apriotesei R., Combes X., Lejay M., Carli P., Vivien B. Comparison of the accuracy of noninvasive hemoglobin monitoring by spectrophotometry (sphb) and hemocue® with automated laboratory hemoglobin measurement. Anesthesiology: The Journal of the American Society of Anesthesiologists. 2011. V. 115. № 3. P. 548–554.
  20. Kupryashov A.A., Biryukova T.V. Vozmozhnosti primeneniya neinvazivnogo gemoglobinometrii dlya skrininga donorov. Gematologiya i transfuziologiya. 2017. № 62(1). S. 41-46. DOI: http://dx.doi.org/10.18821/0234-5730/2017-62-1-41-46 (in Russian).
  21. Mannino R.G., Myers D.R., Tyburski E.A., Caruso C., Boudreaux J., Leong T., Clifford G., Lam W.A. Smartphone app for non-invasive detection of anemia using only patient-sourced photos. Nature communications. 2018. V. 9.
  22. Kavsao˘glu A.R., Polat K., Hariharan M. Non-invasive prediction of hemoglobin level using machine learning techniques with the ppg signal’s characteristics features. Applied Soft Computing. 2015. V. 37. P. 983–991.
  23. Elgendi M. On the analysis of fingertip photoplethysmogram signals. Current cardiology reviews. 2012. V. 8. № 1. P. 14–25.
  24. Wang E.J., Li W., Hawkins D., Gernsheimer T., Norby-Slycord C., Patel S.N. Hemaapp: noninvasive blood screening of hemoglobin using smartphone cameras,.In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, ACM. 2016. P. 593–604.
Date of receipt: 18.10.2024
Approved after review: 27.10.2024
Accepted for publication: 28.11.2024