V.B. Bayburin1, V.P. Meshchanov2, V.V. Komarov3, V.M. Doroshenko4, I.O. Luneva5, N.M. Ermakov6
1,3,4 Yuri Gagarin State Technical University of Saratov (Saratov, Russia)
2 Research and Production Enterprise “NIKA-SVCh”, Ltd. (Saratov, Russia)
5 Saratov State Medical University named after V.I. Razumovsky (Saratov, Russia)
6 FKUN “Russian Research Anti-Plague Institute “Microbe” (Saratov, Russia)
1 baiburinvb@rambler.ru, 3 vyacheslav.komarov@gmail.com, 5 dorvalentina9@gmail.com
Nowadays, one of the most important problems of modern healthcare and scientific medicine is the design of effective and at the same time mobile portable devices which provide reliable and fast decontamination (sterilization) primarily of metal objects that make up the main set of necessary medical instruments.
That is, the main objective of the present work is to design a sterilizer for metal medical instruments with small dimensions and weight, allowing manual transportation with minimal processing time compared to known types of sterilization methods (steam, hot air, radiation, chemical treatment) for widespread use in clinics, outpatient centers, and in the field, military hospitals, long-distance hikes for various purposes. As a result of our research, an experimental sample of a sterilizer with a generation source in the decimeter wave range and with a power of up to 1000 W has been developed. Sterilizer dimensions 500×360×280 mm, weight no more than 20 kg. Experiments carried our with standard sets of instruments have shown that complete sterilization of the instruments irradiated by electromagnetic field is achieved in up to 10 minutes. The destruction of pathogenic microflora (spore and non-spore bacteria of various types) was confirmed in the relevant laboratories of the Saratov State Medical University named after V.I. Razumovsky.
The practical and economic significance of the work is confirmed by reviews from medical institutions, as well as proposals from a number of manufacturing enterprises in Saratov and Moscow for mass production of the developed sterilizer.
The practical application of the results of these studies became a separate scientific and technical direction, in which the most popular was the development of optimal technologies for the destruction of pathogenic microflora in the practice of sterilization of metal objects.
Currently, various sterilization technologies are known. Both stationary and portable sterilization units based on steam and hot air treatment are widely applied. In this case, the processing time is about an hour or more. Ultraviolet radiation treatment is also used, but it also requires long processing times. Installations based on plasma sterilization are quite complex and often lead to damage to instruments due to the instability of plasma processes.
The dominant role of electromagnetic fields compared to the thermal factor in influencing microflora of any type was noted in the present study. The occurrence of sparks in electromagnetic fields is one of the main problems of microwave sterilizing metal instruments and objects infected with various types of pathogenic microflora. Special approaches are used to avoid this undesirable effect.
The project was awarded a bronze medal at the V International Moscow Salon of Innovations.
Bayburin V.B., Meshchanov V.P., Komarov V.V., Doroshenko V.M., Luneva I.O., Ermakov N.M. Setup for electromagnetic irradiation of metal objects implementing ultra-fast decontamination of pathological microflora. Science Intensive Technologies. 2024. V. 25. № 6. P. 5−11. DOI: https://doi.org/ 10.18127/ j19998465-202406-01 (in Russian)
- Lyscov V.N., Frank-Kameneckij D.A., ShChedrina M.V. Dejstvie santimetrovyh radiovoln na vegetativnye kletki, spory i transformiruyushchuyu DNK //Biofizika. 1965. T. 10. S. 105 (in Russian).
- Presman A.S. Elektromagnitnye polya v biosfere. M.: Znanie. 1971. T. 63. S. 4 (in Russian).
- Devyatkov N.D. Vliyanie elektromagnitnogo izlucheniya millimetrovogo diapazona voln na biologicheskie ob"ekty. Uspekhi fizicheskih nauk. 1973. T. 110. № 7. S. 453–454 (in Russian).
- Ismailov E.Sh. Biofizicheskoe dejstvie SVCh-izluchenij. M.: Energoatomizdat. 1987. 143 s. (in Russian).
- Beckij O.V., Golant M.B., Devyatkov N.D. Millimetrovye volny v biologii. M.: Znanie. 1988. 62 s. (in Russian).
- Panasenkov V.I., Sadchikova O.A., Ignatov V.V., Pidenko A.P. Dejstvie moshchnogo EMP s cha-stotoj 2375 MGc na mikroorganizmy. Biologicheskoe dejstvie elektromagnitnyh polej: Tez. dokl. Pushchino. 1982. S. 26 (in Russian).
- Bol'shakov M.A., Bugaev S.P., Goncharik A.O., Gunin A.V., Evdokimov E.V., Klimov A.I., Korovin S.D., Pegel I.V., Rostov V.V. Effect of high-power microwave radiation with nanosecond pulse duration on some biological objects. Biophysics. OOO «Mezhdunarodnaya akademicheskaya izdatel'skaya kompaniya "Nauka/Interperiodika"», 2000. T. 370. S. 21–24.
- Shaw P., Kumar N., Mumtaz S., Lim J. S., Jang J. H., Kim D., Sahu B. D., Bogaerts A., Choi E. H. Evaluation of non-thermal effect of microwave radiation and its mode of action in bacterial cell inactiva-tion. Scientific Reports. 2021. V. 11. № 1. P. 14003.
- Kozempel M., Cook R.D., Scullen O.J. Development of a process for detecting nonthermal effects of microwave energy on microorganisms at low temperature. Journal of Food Processing and Preservation. 2000. V. 24. № 4. P. 287–301.
- Loghavi L., Sastry S.K., Yousef A.E. Effect of moderate electric field frequency and growth stage on the cell membrane permeability of Lactobacillus acidophilus. Biotechnology progress. 2009. V. 25. № 1. P. 85–94.
- Gulyaev Yu.V., Cherepenin V.A. O vozmozhnosti ispol'zovanii moshchnyh elektromagnitnyh im-pul'sov dlya obezzarazhivaniya bakteriologicheski zagryaznennyh ob"ektov. Zhurnal radioelektro-niki. 2020. № 4. S. 11–11 (in Russian).
- Gulyaev Y.V., Taranov I.V., Cherepenin V.A. The use of high-power electromagnetic pulses on bac-teria and viruses. Physics. Pleiades Publishing. 2020. V. 65. P. 230–232.
- Gulyaev Yu.V., Taranov I.V., Cherepenin V.A. Ispol'zovanie moshchnyh elektromagnitnyh im-pul'sov dlya vozdejstviya na bakterii i virusy. Doklady Rossijskoj akademii nauk. Fizika, tekh-nicheskie nauki. 2020. T. 493. № 1. S. 15–17 (in Russian).
- Patent (US) A61L2 № 5019344. Method for sterilizing articles’ such as dental handpieces’. B.S. Kutnez, D.A. Latowicki. Filed 21.04.1988; Pub. 28.05.1991.
- Patent (US) A61L2 № 5019359. Method and apparatus’ for rapid sterilizing of material. B.S. Kutnez, D.A. Latowicki. Filed 22.11.1989; Pub. 28.05.1991.
- Bajburin V.B., Komarov V.V., Meshchanov V.P. Modelirovanie elektrodinamicheskih parametrov mikrovolnovogo sterilizatora. Fizika volnovyh processov i radiotekhnicheskie sistemy. 2022. T. 25. № 4. S. 52–58 (in Russian).
- Bajburin V.B., Komarov V.V., Meshchanov V.P. Matematicheskoe modelirovanie elektromagnit-nyh polej v rabochej srede SVCh-sterilizatora hirurgicheskih instrumentov. Biomedicinskaya radioelektronika. 2023. T. 26. № 6. S. 47–52 (in Russian).
- Bajburin V.B., Meshchanov V.P., Luneva I.O., Komarov V.V., Nikiforov A.A., Fomin A.A., Doro-shenko V.M., Balakin M.I., Kirkica V.A. Eksperimental'nye rezul'taty SVCh-sterilizacii me-tallicheskih instrumentov medicinskogo naznacheniya. Biomedicinskaya radioelektronika. 2023. T. 26. № 6. S. 76–82 (in Russian).
- Eremin V.P., Bajburin V.B., Meshchanov V.P., Komarov V.V., Pahomov Ya.A., Ershov A.S., Doro-shenko V.M., Nikiforov A.A., Balakin M.I. Elektrodinamicheskie i rabochie harakteristiki SVCh-sterilizatora s istochnikom izlucheniya v vide dvuh sparennyh magnetronov. Biomedicinskaya ra-dioelektronika. 2023. T. 26. № 6. S. 60–66 (in Russian).
- Patent A61L2/12 (RF) № 2130319. Sposob bystroj sterilizacii medicinskih instrumentov. V.B. Bajburin, B.N. Maksimenko, A.A. Terent'ev, A.Yu. Mihajlin, I.O. Luneva, G.M. Shub. 1999 (in Russian).
- Patent A61L2/12 (RF) № 45271. Ustrojstvo sverhbystroj sterilizacii medicinskih in-strumentov. V.B. Bajburin, V.V. Tertyshnik, G.M. Shub. 2005 (in Russian).