350 rub
Journal Science Intensive Technologies №5 for 2024 г.
Article in number:
Simulation of the landing situation of an aircraft and the problems of diagnosing anti-skid devices
Type of article: scientific article
DOI: https://doi.org/10.18127/j19998465-202405-04
UDC: 629.7.017.5
Authors:

A.A.Tomilov1, A.V. Potudinsky2, I.K. Makarov3

1–3 Military training scientific center of the «Air Force Academy n.a. Professor N.E. Zhukovsky and Yu.A. Gagarin» (Voronezh, Russian Federation)
2 alepaha@yandex.ru

Abstract:

Safety is ensured, including the safe landing of the aircraft. A short landing run without a skid is achieved by the necessary preparation of the runway, a serviceable braking system, anti-skid automation and take-off and landing devices of the aircraft. Standard operation of anti-skid automatics should be able to cope with constant non-linearity of movement and atmospheric interference on the surface of the runway, as well as adjust the wheel slip coefficient to ensure reliable operation of the braking system. The need to develop technical solutions in the field of expanding the operational capabilities of diagnostic tools for anti-youth automation of the aircraft braking system is determined by regular aviation incidents, related to failures of anti-skid devices, including their incorrect setting before installation on the aircraft landing gear wheel, which leads to serious consequences – increased wear of the wheel tire surface and its possible destruction, including an emergency landing due to loss of control over the aircraft.

The purpose of the work is to simulate the youth situation of the aircraft during landing, to study the problem, to increase the efficiency, reliability of the results of diagnosing devices and automata of the aircraft braking system.

This article discusses the main external and operational factors affecting the dynamics and nature of the aircraft's run along the runway, the model of aircraft movement with the influence of aerodynamic forces on it, the model of tire friction on the ground, and also proposes a method for diagnosing anti-youth automation of the aircraft braking system.

Pages: 46-54
For citation

Tomilov A.A., Potudinsky A.V., Makarov I.K. Simulation of the landing situation of an aircraft and the problems of diagnosing anti-skid devices. Science Intensive Technologies. 2024. V. 25. № 5. P. 46−54. DOI: https://doi.org/ 10.18127/j19998465-202405-04 (in Russian)

References
  1. Vorob'ev V.G., Zubkov B.V. Tekhnicheskie sredstva i metody obespecheniya bezopasnosti poletov v GA. M.: Transport. 2009. 151 s. (in Russian).
  2. Dinamika poleta transportnyh letatel'nyh apparatov. Pod. red. A.Ya. Zhukova. M.: Transport. 2006. 326 s. (in Russian).
  3. Zubkov B.V., Anikin N.V. Aviacionnoe tekhnicheskoe obespechenie bezopasnosti poletov. M.: Vozdushnyj transport. 2003. 280 s. (in Russian).
  4. Kotik M. G. Dinamika vzleta i posadki samoletov. M.: Mashinostroenie. 1994. 256 s. (in Russian).
  5. Byushgens A.G., Bragazin V.F. Kvazistaticheskaya model' raboty avtomata tormozheniya aviacionnyh koles dlya zadach matematicheskogo i polunaturnogo modelirovaniya. V kn.: Kuznecov E.V. Opredelenie parametrov dvizheniya letatel'nogo apparata po dannym bortovyh datchikov uglovyh skorostej i peregruzok. M.: CAGI. 2015. S. 15–24 (in Russian).
  6. Yablonskij S.N. Inzhenerno-aviacionnoe obespechenie boevyh dejstvij i boevoj podgotovki chastej aviacii Vooruzhennyh Sil. M.: Izd. VVA im. prof. N.E. Zhukovskogo i Yu.A. Gagarina. 2009. 300 s.
  7. Bogacheva N.A., Zhukov A.D. Aviacionnye sistemy atiyuzovoj avtomatiki. SPb.: SPbGUAP. 2007. 88 s. (in Russian).
  8. Nelyubova A.I. Metodologiya matematicheskogo modelirovaniya i optimizacii funkcionirovaniya aviacionnoj tekhniki. M.: Izd. VVIA im. prof. N.E. Zhukovskogo. 2008. 248 s.
  9. Akulov O.V. Shassi samoleta Il-76 MD. Irkutsk: IVVAIU. 2007. 267 s. (in Russian).
  10. Velichko I.I., Chokoj V.Z., Sen' L.V. Nadezhnost' i tekhnicheskaya diagnostika aviacionnoj tekhniki. Irkutsk: IVVAIU. 2006. 187 s. (in Russian).
  11. Podkopaev A.V., Kondrashov N.G., Pliplin A.A. Nadezhnost' i tekhnicheskaya diagnostika. Voronezh: VUNC VVS «VVA». 2016. 287 s. (in Russian).
  12. Radak, M.B.; Prekup, R.E. Upravlenie antiyuzovoj sistemoj tormozov bez proskal'zyvaniya na osnove dannyh s pomoshch'yu Q-obucheniya. Nejrokomp'yuting. 2019. S. 275, 317–329 (in Russian).
  13. Li, F.B.; Huan, P.M.; Yang, K.H.; Lyao, L.K.; Go, U.H. Razrabotka sistemy upravleniya skol'zyashchim rezhimom elektricheskoj tormoznoj sistemy samoleta na osnove nablyudeniya nelinejnyh vozmushchenij. ActaAutom. 2021. № 47. S. 2557–2569 (in Russian).
  14. Czyao, Z.; Sun, D.; Chzhan, Yu.; Lyu, H.; Vu, S. Vysokoeffektivnoe antiyuzovoe tormoznoe ustrojstvo samoleta s identifikaciej vzletno-posadochnoj polosy. Aerospektra. Nauka. Tekhnologiya. 2019. № 91. S. 82–95 (in Russian).
  15. Czyao, Z.; Van, Z.; Sun, D.; Lyu, H.; Chzhan, Yu.; Vu, S. Novyj metod upravleniya antiyuzovoj sistemoj samoleta, osnovannyj na algoritme otslezhivaniya maksimal'nogo treniya na vzletno-posadochnoj polose. Aerosp. Sci. Tekhnologiya. 2021. № 110. S. 106482 (in Russian).
  16. Sv-vo o gosudarstvennoj registracii programmy dlya EVM № 2023611093 «Programma dlya diagnostirovaniya datchikov antiyuzovoj avtomatiki sistemy tormozheniya VS s centrobezhnymi mekhanizmami». A.V. Potudinskij. 2023 (in Russian).
  17. Sv-vo o gosudarstvennoj registracii programmy dlya EVM № 2023616386 «Programma dlya diagnostirovaniya datchikov antiyuzovoj avtomatiki sistemy tormozheniya VS s inercionnymi mekhanizmami». A.V. Potudinskij, I.K. Makarov, V.S. Kolerov. 2023 (in Russian).
  18. Sv-vo o gosudarstvennoj registracii programmy dlya EVM № 2023617820 «Programma proverki funkcionirovaniya mikrovyklyuchatelya datchika antiyuzovoj avtomatiki». A.V. Potudinskij, I.K. Makarov, E.A. Nevzorov. 2023 (in Russian).
Date of receipt: 19.07.2024
Approved after review: 01.08.2024
Accepted for publication: 28.08.2024