350 rub
Journal Science Intensive Technologies №3 for 2024 г.
Article in number:
Prospects of the radiophotonics application in ground-based long-range detection radars
Type of article: scientific article
DOI: https://doi.org/10.18127/j19998465-202403-04
UDC: 621.396
Authors:

I.V. Melnikov1, D.D. Stupin2

1, 2 Moscow Institute of Physics and Technology (MIPT) (Dolgoprudny, Moscow Region, Russia)
1melnikov.IV@mipt.ru, 2ddstupin@yandex.ru

Abstract:

The application of radiophotonic technologies in radar, according to many researchers and developers, is able to reach qualitative gain in parameters of radio information systems and complexes. However, these improvements are mainly pertinent to radars operating above 20 GHz, what implies a relatively short range. At the same time, the application of radiophotonics in "low-frequency" radars that solve tasks of detecting and observing objects at long distances, including space objects, attracts much less attention. Given importance of monitoring the near space with its extreme overload of targets and need to find new effective system, technical and technological solutions for creating highly informative radars, it is worth to consider making use of radiophotonics technologies in long-range detection radars. This paper aimes to estimate benefits radiophotonics technologies may suggest to long-range radars features. The prospects of the application of radiophotonic technologies in radar are estimated from the standpoint of qualitative gain in energy and information features for the tasks of detecting space targets and evaluating their coordinate and non-coordinate parameters. This enables us with a more reasonable approach towards new system engineering, design, and technological solutions into both existing and developed radars that might improve monitoring near-Earth space.

Pages: 46-58
For citation

Melnikov I.V., Stupin D.D. Prospects for the use of radiophotonics in ground-based long-range detection radars. Science Intensive Technologies. 2024. V. 25. № 3. P. 46−58. DOI: https://doi.org/10.18127/ j19998465-202403-04 (in Russian)

References
  1. Boev S.F. i dr. Moshchnye nadgorizontnye RLS dal'nego obnaruzheniya: Nauchnaya monografiya. Pod red. S.F. Boeva. M.: Radiotekhnika». 2013 (in Russian).
  2. Bogoni A., Ghelfi P., Loghezza F. Photonics for Radar Networks and Electronic Warfare Systems. The Institution of Engineering and Technology. 2019.
  3. Antonov A.N., Golovin S.V., Markov R.M., Mel'nikov I.V., Nadezhdin E.R., Neeshpapa A.V., Sokolov V.A., Tihockij S.A. Primenenie pitaniya po opticheskomu voloknu v eksperimental'noj sisteme sejsmicheskoj s"emki i monitoringa. Geofizicheskie issledovaniya. 2022.
    T. 23. № 4. S. 55–72. https//doi.org/10/21455/gr2022.4-4 (in Russian).
  4. Zajcev D.F., Andreev V.M., Bilenko I.A., Berezovskij A.A., Vladislavskij P.Yu., Gurfinkel' Yu.B., Cvetkova L.I., Kalinovskij V.S., Kondrat'ev N.M., Kosolobov V.N., Kurochkin V.F., Slip-chenko S.O., Smirnov N.V., Yakovlev B.V. Pervaya radiofotonnaya fazirovannaya antennaya reshetka. Radiotekhnika. 2021. T. 85. № 4. S. 153−164. DOI: https://doi.org/10.18127/j00338486-202104-17 (in Russian).
  5. Golov N.A., Savchenko V.P., Skosyrev V.N., Usachev V.A. Radiofotonika v perspektivnyh ra-diolokacionnyh sistemah. Uspekhi sovremennoj radioelektroniki. 2020. T. 74. № 12. S. 17–31. DOI: 10.18127/j20700784-202012-02 (in Russian).
  6. Stepanenko S.A. Fotonnyj komp'yuter: struktura i algoritmy, ocenki parametrov. Foto-nika. 2017. № 7. S. 72–83 (in Russian).
  7. Isihara S. Opticheskie komp'yutery: Novaya era nauki. M.: Nauka. 1992. 96 c. (in Russian).
  8. Akaev A.A., Majorov S.A. Opticheskie metody obrabotki informacii. M.: Vysshaya shkola. 1988. 237 s. (in Russian).
  9. Evtihiev N.N., Karinskij S.S., Mirovickij D.I. Kogerentno – opticheskie ustrojstva pere-dachi i obrabotki informacii. M., 1987. 158 c.
    (in Russian).
  10. Barzandzhe Sh., Guha S., Uidbruk K., Vitali D., Shapiro D.H., Pirandola S. (2015-02-27). Mikrovolnovoe kvantovoe osveshchenie. Physical Review Letters. V. 114 (8): 080503. arXiv:1503.00189. Bibcode:2015PhRvL.114h0503B. doi:10.1103/physrevlett.114.080503. ISSN 0031-9007. PMID 25768743. Kod S2C 119189135 (in Russian).
  11. Kvantovaya mekhanika mogla by uluchshit' radar. Physics. 2015. V. 8. № 18 ([1]) (in Russian).
  12. Sendbo Chang K.U., Vadiradzh A.M., Burassa Dzh., Baladzhi B., Uilson K.M. Radar s kvantovym usileniem shuma. Prilozhenie. Fizika. Lett. 2020. № 114 (11): 112601. arXiv:1812.03778. doi:10.1063/1.5085002. S2CID 118919613 (in Russian).
  13. Adam D. (2007-03-06). Oboronnyj podryadchik SShA stremitsya k kvantovomu skachku v issledo-vaniyah radarov. The Guardian. London. Provereno 2007-03-17 (in Russian).
  14. Allen E.H. Radiolokacionnye sistemy i metody s ispol'zovaniem zaputannyh kvantovyh cha-stic. Vypushchen 2013-03-13, prisvoen korporacii Lockheed Martin. EP grant 1750145 (in Russian).
  15. Bakulev P.A. Radiolokacionnye sistemy: Uchebnik dlya vuzov. M.: Radiotekhnika. 2004 (in Russian).
  16. Logovskij A.S., Mal'cev G.N., Rahmanov A.A., Timoshenko A.V. Tekhniko-ekonomicheskij pokaza-tel' effektivnosti sozdaniya radiolokacionnyh sistem dal'nego obnaruzheniya. Vooruzhenie i ekonomika. 2020. № 2 (52). S. 9–23 (in Russian).
  17. Dogovor mezhdu Soyuzom Sovetskih Socialisticheskih Respublik i Soedinennymi Shtatami Ameriki ob ogranichenii sistem protivoraketnoj oborony. 26.05.1972 g. (in Russian).
  18. Zervas N., Codemard C.A. High power fibre lasers: A review. IEEE J. Sel. Top. Quantum Electron. 2014. V. 20. P. 0901509.
  19. Bystrov R.P., Sokolov S.A., Cherepenin V.A. Sistemy i ustrojstva na osnove radiofotoniki primenitel'no k radiolokacii. Zhurnal radioelektroniki. 2017. № 6. S. 1–17 (in Russian).
  20. Stupin D.D. Vozmozhnosti raspoznavaniya situacii v zone dejstviya RLS nablyudeniya kosmiche-skih ob"ektov pri ispol'zovanii kogerentnyh signalov bol'shoj dlitel'nosti. Izv. YuFU. Ser.: Tekhnicheskie nauki. 2012. № 3. Mart. S. 119–126 (in Russian).
  21. Zajcev D.F. Nanofotonika i ee primenenie. M.: Firma «AKTEON». 2014. 445 s. (in Russian).
  22. Areshin Ya.O., Zareckij S.V., Shatilov A.I. Principy sozdaniya specializirovannogo mnogo-pozicionnogo radiolokacionnogo kompleksa slezheniya za «kosmicheskim musorom» i ego potenci-al'nye tochnostnye harakteristiki. Uspekhi sovremennoj radioelektroniki. 2016. № 9. S. 28–35 (in Russian).
  23. Savanevich V.E., Kozhuhov A.M., Bryuhoveckij A.B., Dikov E.N. Metod obnaruzheniya asteroidov, osnovannyj na nakoplenii signalov vdol' traektorij s neizvestnymi parametrami. Sistemy obrabotki informacii. 2011. Vyp. 2. S. 137–144 (in Russian).
  24. Kolessa A.E., Repin V.G. Robastnyj adaptivnyj algoritm vydeleniya otmetok ot celej v cif-rovom izobrazhenii. Kosmicheskie informacionno-upravlyayushchie sistemy. 2009. Vyp. 3 (in Russian).
  25. Golov N.A., Usachev V.A., Boev S.F., Savchenko V.P., Shulunov A.N., Zubarev Yu.B. Evolyuciya ra-diofotoniki i perspektivy ee primeneniya v radiolokacii. «RTI Sistemy VKO – 2017»: Trudy V Vseros. n.-t. konf.. AO «RTI», MGTU im. N. E. Baumana, In-t radiotekhniki i elektroniki im. V. A. Kotel'nikova, RAN. M. 2018. S. 292–320 (in Russian).
Date of receipt: 12.02.2024
Approved after review: 28.02.2024
Accepted for publication: 24.04.2024