350 rub
Journal Science Intensive Technologies №1 for 2024 г.
Article in number:
Modern technologies and their practical application. Part 1. Cleaning and disinfection of water in cleaning systems
Type of article: overview article
DOI: https://doi.org/10.18127/j19998465-202401-07
UDC: 64.065
Authors:

O.V. Terekhin1, A.A. Vasin2

1, 2 All-Russian Institute of Scientific and Technical Information of the RAS (Moscow, Russia)
1, 2 Moscow Aviation Institute (National Research University) (Moscow, Russia)
1, 2 mai4062@mail.ru

Abstract:

Along with the usual contaminants (dirt, sand, etc.), water may contain bacteria, viruses, parasites that cause various diseases, so water purification and disinfection is a fairly pressing problem, especially in closed systems (for example, in cleaning systems) , from where bacteria can enter the air and ultimately harm people's health.

Currently, there are many methods that make it possible to remove not only microorganisms from water, but also unwanted impurities that accumulate on the surfaces of equipment used for its purification. This extends the service life of the equipment, which is especially important for equipment operating in conditions of high humidity or in the presence of aggressive substances in the water. The result is a reduced risk of breakdowns and malfunctions, and reduced repair and maintenance costs.

In practice, the choice of a specific method in each case should be based on a comprehensive analysis of the proposed solution from technical, operational, environmental, hygienic and economic points of view. The purpose of the work is to consider various methods of water purification and disinfection that can be used in modern cleaning systems.

The work provides a classification of methods for water purification and disinfection, discusses examples of their use, and provides a comparative analysis in order to select the most suitable one for compact cleaning systems used in domestic conditions. The given data allows you to make an informed choice of cleaning equipment that best suits the conditions of its intended operation.

Pages: 58-75
For citation

Terekhin O.V., Vasin A.A. Modern technologies and their practical application. Part 1. Cleaning and disinfection of water in cleaning systems. Science Intensive Technologies. 2024. V. 25. № 1. P. 58−75. DOI: https://doi.org/10.18127/ j19998465-202401-07 (in Russian)

References
  1. Azhgirevich A.I. Intensifikaciya UF-tekhnologii obezzarazhivaniya vody dlya lokalizacii negativnyh vozdejstvij sistem vodosnabzheniya na okruzhayushchuyu sredu: Dis. … k.t.n. Novocherkassk. 2002 (in Russian).
  2. Tec V.I. Sanitarnaya bakteriologiya. M.: Medgiz. 1953 (in Russian).
  3. Draginskij V.L., Alekseeva L.P. Primenenie ozona v tekhnologii podgotovki vody: Inform. materialy. M.: Inform. centr «Ozon». 1996. Vyp. 2 (in Russian).
  4. Medvedev M.N., Gorbovskij S.V. Unichtozhenie patogennyh mikrobov s pomoshch'yu lazernogo izlucheniya. Byulleten' po atomnoj energii. 2003. № 8. S. 43–45. URL: http://elib.biblioatom.ru/text/byulleten-atomnoy-energii_2003_v8/go,42 (in Russian).
  5. Kriss A.E. Zhiznennye processy i gidrostaticheskoe davlenie. M.: Nauka. 1973 (in Russian).
  6. Basset et al. 1938.
  7. Lepine et al. 1936.
  8. Rutberg, 1964.
  9. Nikulina S.N. Rol' bezreagentnoj ochistki presnyh vod pri proizvodstvennoj deyatel'nosti promyshlennyh predpriyatij v sohranenii zdorov'ya rabotnikov: Avtoreferat dis. … k.t.n. M. 2005 (in Russian).
  10. Tihonov A.V., Kucher M.I., Frenkel' E.E. Sovremennye metody obezzarazhivaniya pit'evoj vody. Materialy IX Mezhdunarodnoj studencheskoj nauchnoj konferencii «Studencheskij nauchnyj forum» URL: https://scienceforum.ru/2017/article/2017038575 (data obrashcheniya: 08.11.2023) (in Russian).
  11. Dyatlov M.V. Dostoinstva i nedostatki obezzarazhivaniya prirodnoj vody metodom ul'trafioletovogo oblucheniya. Magisterskaya dissertaciya. Tol'yatti: Tol'yattinskij gosudarstvennyj universitet. 2017 (in Russian).
  12. Patent RF № 2521055. Ustrojstvo dlya dezinfekcii vody. A.V. Zabolotskij, P.V. Bogun. Opubl. 27.06.2014 (in Russian).
  13. Patent RF № 2031850. Ustrojstvo dlya ochistki i obezzarazhivaniya vodnyh sred. V.P. Arhipov, A.S. Kamrukov, P.A. Ovchinnikov i dr. 1995 (in Russian).
  14. Ustrojstvo dlya obezzarazhivaniya pit'evoj vody v bytu ul'trafioletovym izlucheniem. O.L. Gricaj i dr. 2017 (in Russian).
  15. Szeto W., Yam W.C., Huang H., et al. The efficacy of vacuum-ultraviolet light disinfection of some common environmental pathogens. BMC Infectious Diseases. 2020. 20:127.
  16. Poleznaya model' 57268 U1 RF. Ochistitel' vody na osnove lazerno-ul'trafioletovogo izlucheniya. V.I. Grachev, A.V. Grachev,
    V.A. Karpenko, M.S. Noskov. Zayavl. 27.02.2006. Opubl. 10.10.2006. URL: https://patents.s3.yandex.net/RU57268U1_20061010.pdf (in Russian).
  17. Nauchnyj divizion Rosatoma. Rosatom vpervye ispytal mobil'nyj lazer dlya avarijnoj ochistki vodnoj poverhnosti ot neftyanyh razlivov. URL: https://www.atomic-energy.ru/news/2023/11/09/140384 (in Russian)
  18. Kul'chin Yu.N., Subbotin E.P., Kondrashina A.S., Subbotin P.E. Ochistka poverhnostej akvatorij ot neftyanoj plenki s pomoshch'yu volokonnyh lazerov bol'shoj moshchnosti. Sb. materialov IX Mezhdunar. ekologicheskogo foruma «priroda bez granic». 29−30 oktyabrya 2015 g. URL: https://lazer.rf/2017/01/11/1923 (in Russian)
  19. Takanaeva O.A. Ochistka poverhnostej vodoyomov ot neftyanoj plenki s pomoshch'yu lazernogo izlucheniya. Astrahan'. 2012. URL: https://cyberleninka.ru/article/n/ochistka-poverhnostey-vodoyomov-ot-neftyanoy-plenki-s-pomoschyu-lazernogo-izlucheniya/viewer
    (in Russian).
  20. Yakovleva O.V., Nikulina S.N. Vozdejstvie lazernogo izlucheniya na process obezzarazhivaniya vody i ochistku stochnyh vod posle gal'vaniki. Vakuumnaya, plazmennaya i tverdotel'naya elektronika. M.: Radiotekhnika. 2012. № 1. S. 79–84 (in Russian).
  21. Nikulina S.N., Zhukova Yu.M., Dyhno Ya.N., Kulikova I.I., Sanyutina Ya.A. Vozdejstvie lazernogo izlucheniya na process obezzarazhivaniya vody i ochistku rodnikovyh vod g. Kalugi. Naukoemkie tekhnologii. 2015. № 1. S. 79–85 (in Russian).
  22. Patent 105011 (RF). Sposob polucheniya vysokih i sverhvysokih davlenij. L.A. Yutkin, L.I. Gol'cova. Zayavl. 15.04.1950. Opubl. 01.01.1957. URL: https://patents.su/2-105011-sposob-polucheniya-vysokikh-i-sverkhvysokikh-davlenijj.html (in Russian).
  23. Poleznaya model' RU 118306 U1. Ustrojstvo dlya ochistki i obezzarazhivaniya vody. S.G. Emel'yanov, A.M. Krygina, A.A. Akul'shin,
    E.V. Barsukova. Opubl. 20.07.2012. URL: https://patents.s3.yandex.net/RU118306U1_20120720.pdf (in Russian).
  24. Patent RU 2012101580 (RF). Sposob ochistki i obezzarazhivaniya vody. S.G. Emel'yanov, A.M. Krygina, A.A. Akul'shin, E.V. Barsukova. Zayavl. 17.01.2012. Opubl. 27.07.2013. Byul. № 21 (in Russian).
  25. Poleznaya model' RU 127324 U1. Plazmohimicheskij reaktor dlya ochistki vozduha. V.Yu. Cypkin. Opubl. 27.04.2013. Byul. № 12. URL: https://patentimages.storage.googleapis.com/8b/10/44/83641f3a26a825/RU127324U1.pdf (in Russian).
  26. Temkin V., Gorelkina E., Pevgov V., Panin A. Ustrojstvo dlya ochistki vozduha ot virusov i bakterij metodom plazmennoj destrukcii na aktivnom fil'tre. URL: https://pt.2035.university/project/ustrojstvo-dla-ocistki-vozduha-ot-virusov-i-bakterij-metodom-plazmennoj-destrukcii-na-aktivnom-filtre (in Russian).
  27. Zabulonov Yu., Petrov S. O plazmohimicheskoj ochistke vody. URL: https://aw-therm.com.ua/o-plazmohimicheskoj-ochistke-vody (in Russian).
  28. Potekhin V. Obezzarazhivanie pit'evoj vody i stochnyh vod s pomoshch'yu obrabotki plazmennoj struej. 14.02.2019. URL: https://vtorayaindustrializaciya.rf/obezzarazhivanie-pitevoy-vodyi-i-stochnyih-vod-plazmoy (in Russian)
  29. Arakcheev E.N., Brunman V.E., Brunman M.V., Volkov A.N., D'yachenko V.A., Kochetkov A.V., Petkova A.P. Sovremennaya perspektivnaya tekhnologiya obezzarazhivaniya vody i stokov. Gigiena i sanitariya. 2015. № 4 (94). S. 25–32 (in Russian).
  30. Reagenty dlya obezzarazhivaniya pit'evoj vody, kakie oni? URL: http://vodopodgotovka-vodi.ru/obezzarazhivanie-vody/reagenty-dlya-obezzarazhivaniya-pitevoy-vody-kakie-oni (in Russian).
  31. Yin-Hu Wu, Hong-Ying Hu. Electrochemical membrane technology for disinfection. 2022.
  32. Iram A., Wang X., Demirci A. Electrolyzed oxidizing water and its applications as sanitation and cleaning agent. Food Engineering Reviews. 2021. V. 13. P. 411–427.
  33. Obezzarazhivanie vody – sovremennye metody. URL: http://global-aqua.ru/metody-i-tekhnologii/obezzarazhivanie-vody.html (in Russian).
  34. Kapustin V.I., Korzhavyj A.P. Novaya bezreagentnaya tekhnologiya dlya ochistki pit'evoj vody i osadkov stochnyh vod. Ekologiya Kalugi. Informacionnyj obzor – 2009. S. 29–31. URL: http://www.ecoanalyt.ru/upload/pages/43/ek2009.pdf (in Russian).
  35. Patent № 2585635 (RF). Sposob obezzarazhivaniya i ochistki zhidkih sred i tekhnologicheskaya liniya dlya ego realizacii. A.I. Svishchev, I.E. Zhuravlev, V.N. Sotnikov, I.B. Masyuk, Yu.A. Ivanyutenko, A.V. Belyaev. Zayavl. 15.12.2014. Opubl. 27.05.2016. Byul. 15. URL: https://patentimages.storage.googleapis.com/50/f4/aa/4a39bfddfb7571/RU2585635C1.pdf (in Russian).
  36. Patent № 2725234 (RF). Gidrodinamicheskaya ustanovka obrabotki zagryaznennoj vody. Yu.E. Vashchenko, V.S. Sotnikov. Zayavl. 30.05.2018. Opubl. 30.06.2020. Byul. 19. URL: https://patents.s3.yandex.net/RU2725234C2_20200630.pdf (in Russian).
  37. Patent № 2384528 (RF). Ustanovka mikrobiologicheskoj ochistki stochnyh vod. E.V. Levin, A.V. Bykov, L.V. Mezhueva, N.Z. Sultanov. Zayavl. 11.12.2008. Opubl. 20.03.2010. Byul. 8 (in Russian).
  38. Haysom I.W., Sharp K. The survival and recovery of bacteria in vacuum cleaner dust. The Journal of the Royal Society for the Promotion of Health. 2003. V. 123. № 1. P. 39–45.
  39. Bahrami A., Haghighat F., Bahloul A. Vacuum cleaner as a source of abiotic and biological air pollution in buildings: a review. Advances in building energy research. 2020. DOI: 10.1080/17512549.2020.1863859.
  40. Villlette M., Knibbs L.D., Pelletier A. et al. Microbial contents of vacuum cleaner bag dust and emitted bioaerosols and their implications for human exposure indoors. Applied and environmental microbiology. 2013. V. 79. № 20. kP. 6331–6336.
  41. Patent WO 2007/038298 A2. Vacuum cleaner with ultraviolet light source and ozone. S.V. Makarov, G.M. Kloeppel. Publ. 05.04.2007.
  42. Patent US 7530140 B2. Vacuum cleaner with ultraviolet light source and ozone. S.V. Makarov, G.M. Kloeppel. Publ. 12.05.2009.
  43. Patent US 2008/0295270 A1. Cleaning and sterilizing apparatus combined with an ultra-violet lamp. D. Perunicic. Publ. 04.12.2008.
  44. Patent WO 2021/048887 A1. Vacuum cleaner and sanitizing method. L. Scian, E. Mazzolo. Publ. 18.03. 2021.
  45. Patent US6776824B2. Antiviral and antibacterial filtration module for a vacuum cleaner or other appliance. Sh.H. Wen.
  46. Patent US 8925141 B2. Vacuum cleaner having sterilization function. Min-ha Kim, Joung-soo Park, Sung-tae Joo, et al. Publ. 26.04.2012.
  47. Patent GB 2435820 A. Vacuum cleaner with improved hygenic performance. Fester J.A. et al. Publ. 12.09.2007.
  48. Besprovodnoj moyushchij pylesos Deerma VX96W s dvumya valikami, elektrolizom vody i dolgoj samoochistkoj: obzor i videoobzor. URL: https://www.ixbt.com/live/chome/besprovodnoy-moyuschiy-pylesos-deerma-vx-96w-s-dvumya-valikami-i-dolgoy-samoochistkoy. html?ysclid=lp0y7d9mju597443109 (in Russian).
  49. Remez RMVC-601 – IQSelf Robotizirovannyj vertikal'nyj moyushchij pylesos. URL: https://remez.com.ru/product/iqself-robotizirovannyy- vertikalnyy-moyuschiy-pylesos-rmvc-601 (in Russian).
  50. Eureka FC9 Review – good vacuum cleaner with water electrolysis. URL: https://en.techreviewer.de/eureka-fc9.
Date of receipt: 29.11.2023
Approved after review: 11.12.2023
Accepted for publication: 15.01.2024