350 rub
Journal Science Intensive Technologies №1 for 2024 г.
Article in number:
Problems of analysis and modeling of non-stationary systems and signals with delay in a feedback loop
Type of article: scientific article
DOI: https://doi.org/10.18127/j19998465-202401-03
UDC: 621.391.8
Authors:

D.V. Beylekchi1, V.A. Ermolaev2, A.A. Kolpakov3, A.Yu. Proskuryakov4

1–4 Murom Institute of Vladimir State University (Murom, Russia)
1 desT.087@gmail.com

Abstract:

The task of designing telecommunication systems of acoustic signal exchange with increased noise immunity refers to the solution of signal processing problems, with the purpose of information extraction and interference suppression by methods of adaptive filtering, adaptive interference compensation and system identification, and the tasks are set and solved:

- identification of non-stationary signals and creation of non-stationary models based on the observed data;

- adaptive compensation of acoustic interference and echo-signals.

Methods of adaptive filtering, adaptive interference compensation and system identification, methods of increasing noise immunity of information exchange systems are based on the theory of random processes and mathematical statistics, on the theory of linear and nonlinear systems. One of the problems is to ensure the stability of loudspeaker and public address systems, which are characterized by the presence of acoustic channels of delayed, usually distributed feedback, modeling the phenomena of echo and reverberation. There are two approaches to modeling systems with concentrated and distributed delays in the feedback loop: the approach based on the ideology of multilink models and the approach originating from the theory of variable structure systems, which, respectively, implement the ideas of invariance and sliding modes of optimization and control.

The main goals and objectives of the research are the development of new methods, models and algorithms for processing acoustic signals and control information that improve the efficiency of operational-command, dispatching and information-management telecommunication systems in the presence of external interference. The purpose of this paper is to construct and analyze multi-connection models of systems with concentrated and distributed delay in the feedback loop. The structure of resonant models of reverberation (multiple reflections) is considered: with fixed delays, with variable delays, with distributed, on finite or unlimited intervals, delays. In this case, distributed delays are considered only on a finite interval.

It is shown that in multilink models of resonant modes of multiple reflections, the phenomenon of multiple reflections, defined in acoustics as reverberation, consists in the mixing of distorted copies of the same signal to be extracted. This poses the problem of creating a model that helps to reveal the composition of resonant modes and their parameters. It seems that the realization of such models is possible both in the class of multi-connected and distributed systems, including systems with delay, which always accompanies the phenomenon of multiple reflections at their subsequent superposition. The model of systems with distributed delay described by the modified Hutchinson equation is investigated. It is found that the model is described by a linear differential equation whose solution at each of the specified intervals can be obtained, provided that the function h(τ) and the initial conditions given at the initial interval are known.

In the course of the research it is shown that the graph of the multilink system actually coincides with the graph of interconnections of the artificial neural network. The model of the system with distributed delay described in the paper has been tested using Scilab and can be applied for further developments.

Pages: 25-34
For citation

Beylekchi D.V., Ermolaev V.A., Kolpakov A.A., Polyakova T.R., Proskuryakov A.Yu. Problems of analysis and modeling of non-stationary systems and signals with delay in a feedback loop. Science Intensive Technologies. 2024. V. 25. № 1. P. 25−34. DOI: https://doi.org/10.18127/ j19998465-202401-03 (in Russian)

References
  1. Hansler E., Schmidt G. (Eds.) Topics in acoustic echo and noise control: Selected methods for the cancelation of acoustic echoes, the reduction of background noise, and speech processing. Berlin, Heidelberg: Springer, 2006.
  2. Kuttruff H. Room acoustics. London New York: Spon Press, 2009.
  3. Ryaben'kij V.S. Model' aktivnogo ekranirovaniya zadannoj podoblasti ot shuma vneshnih istochnikov v tekushchem vremeni. ZhVMMF. 2011. T. 51. № 3. S. 480–491 (in Russian).
  4. Ryaben'kij V.S. Aktivnaya zashchita akusticheskogo polya zhelatel'nyh istochnikov ot vneshnego shuma v real'nom vremeni. Preprinty IPM im. M. V. Keldysha. 2016. S. 027 (in Russian).
  5. Kiddle C., Simmonds R., Williamson C., Unger B. Hybrid packet/fluid flow network simulation. Proceedings of the Seventeenth Workshop on Parallel and Distributed Simulation (PADS’03). IEEE. 1087-4097/03. 2003.
  6. Agarwal R.P. (et al.) Nonoscillation theory of functional differential equations with applications. New York London: Springer. 2012.
  7. Atay F.M. (ed.) Complex time-delay systems, understanding complex systems. Berlin Heidelberg: Springer. 2010.
  8. Loiseau J.J., Michiels W., Niculeseu S-I, Sipachi R. (Eds.) Topics in time delay systems. Analysis, Algorithms and Control. – Berlin Heidelberg: Springer. 2009.
  9. Witrant E., Fridman E., Sename O., Dugard L. (Eds.) Recent results on time-delay systems. Analysis and Control. – Heidelberg: Springer. 2016.
  10. Lakshmanan M., Senthilkumar D.V. Dynamics of nonlinear time-delay systems. Berlin Heidelberg: Springer. 2010.
  11. Kwon W.H., Park P. Stabilizing and optimizing control for time-delay systems. Berlin: Springer. 2019.
  12. Krstic M. Delay compensation for nonlinear, adaptive and PDE systems. Boston: Springer. 2009.
  13. Marquis B.A., Larger L., Brunner D., Chembo Y.K., Jacquot M. Interaction between Lie nard and Ikeda dynamics in nonlinear electro-optical oscillator with delayed band pass feedback. Physical Review E94. 062208 2016.
  14. Bellen A., Zennaro M. Numerical methods for delay differential equations. Oxford: Clarendon Press. 2003.
  15. Gureckij H. Analiz i sintez sistem upravleniya s zapazdyvaniem. M.: Mashinostroenie. 1974 (in Russian).
  16. D’Anzhelo G. Linejnye sistemy s peremennymi parametrami. M.: Mashinostroenie. 1974 (in Russian).
  17. Kochetkov S.A., Utkin V.A. Metod dekompozicii v zadachah upravleniya mobil'nymi robotami. Avtomatika i telemekhanika. 2011. № 10. S. 86–103 (in Russian).
  18. Armah S. K., Sun Yi. Adaptive control for quadrotor UAVs considering time delay: study with flight payload. Robotics & Automation Engineering Journal. 2018. V.2. № 5. P. 00112–00124.
  19. Zhang H.-Y., Lin W.-M., Chen A.-X. Path planning for the mobile robot: A review. Simmetry. 2018. V. 10. P. 434–450.
  20. Wahab M.N.A., Lee C.M., Akbar M.F., HassanF.H. Path planning for mobile robot navigation in unknown indoor enviremenths. IEEE Access. 2020. V. 8. P. 161805–161–815.
  21. Petrov B.N. Izbrannye trudy. Tom 1. Teoriya avtomaticheskogo upravleniya. M.: Nauka. 1983 (in Russian).
  22. Emel'yanov S.V. Izbrannye trudy po teorii upravleniya. M.: Nauka. 2006 (in Russian).
  23. Emel'yanov S.V., Fursov A.S. Koordinatno-operatornaya obratnaya svyaz'. Svojstva. Osobennosti. Perspektivy. Avtomatika i telemekhanika. 2015. № 10. S. 3–39 (in Russian).
  24. Krasnova S.A., Utkin V.A., Utkin A.V. Blochnyj podhod k analizu i sintezu invariantnyh nelinejnyh sistem slezheniya. Avtomatika i telemekhanika. 2017. № 12. S. 26–53 (in Russian).
  25. Il'yasov B.G., Saitova G.A. Issledovanie mnogosvyaznyh sistem avtomaticheskogo upravleniya slozhnymi dinamicheskimi ob"ektami na osnove paradigmy B.N. Petrova. Problemy upravleniya. 2021. № 3. S. 3–15 (in Russian).
  26. Eremin E.L., Shelenok E.A. Robastnoe upravlenie dlya odnogo klassa mnogosvyaznyh dinamicheskih ob"ektov. Avtomatika i telemekhanika. 2017. № 6. S. 106–121 (in Russian).
  27. Grebenshchikov B.G. O stabilizacii nekotoryh sistem s zapazdyvaniem. Avtomatika i telemekhanika. 2019. № 4. S. 41–52.
  28. Utkin A.V., Utkin V.A. Sintez sistem stabilizacii pri odnostoronnih ogranicheniyah na upravlyayushchie vozdejstviya. Problemy upravleniya. 2020. № 3. S. 3–13 (in Russian).
  29. Kochetkov S.A., Utkin V.A. Invariantnost' v sistemah s neideal'nymi relejnymi elementami. UBS. 2009. Vyp. 27. S. 117–168 (in Russian).
  30. Utkin V.I. Skol'zyashchie rezhimy v zadachah optimizacii i upravleniya. M.: Nauka. 1981 (in Russian).
  31. Utkin V.I., Guldner J., Shi J. Sliding mode control in electromechanical systems. CRC Press. N.Y. 2009.
  32. Levant A., Mishael A. Adjustment of high-order sliding-mode controllers. Int. J. Robust Nonlinear Control. 2009. V. 19. P. 1697–1672.
  33. Piltan F., Sulaiman N. Review of sliding mode control of robotic manipulator. World Appl. Sci. Engin, 2012. V. 2. № 12. P. 1855–1869.
  34. Pikdeboon C. Second-order sliding mode controllers for spacecraft relative translation. Appl. Math. Sci. 2012. V. 6. № 100. P. 4965–4979.
  35. Khadija D., Majda L., Said N. New discrete sliding mode control for nonlinear multivariable systems: multi-periodic disturbances rejection and stability analysis. Int. J. Control Sci. Engin. 2012. V. 2. № 2. P. 7–15.
  36. Utkin V.I. Kratkij kommentarij k metodu A.F. Filippova prodolzheniya resheniya na granice razryva. Avtomatika i telemekhanika. 2015. № 5. S. 165–174 (in Russian).
  37. Utkin V.I., Orlov Yu.V. Sistemy upravleniya s vektornymi rele. Avtomatika i telemekhanika. 2019. № 9. S. 143–155.
  38. Gorovic A.M. Sintez sistem s obratnoj svyaz'yu. M.: Sov. radio. 1970 (in Russian).
  39. Yanushevskij R. T. Upravlenie ob"ektami s zapazdyvaniem. M.: Nauka. 1978 (in Russian).
  40. Tomovich R., Vukobratovich M. Obshchaya teoriya chuvstvitel'nosti. M.: Sov. radio. 1972 (in Russian).
  41. Rozenvasser E.N., Yusupov R.M. Chuvstvitel'nost' sistem upravleniya. M.: Nauka. 1981 (in Russian).
  42. Chuvstvitel'nost' avtomaticheskih sistem. Trudy Mezhdunarodnogo simpoziuma po chuvstvitel'nym sistemam avtomaticheskogo upravleniya. Otvetstvennyj redaktor Ya.Z. Cypkina. (Dubrovnik, sentyabr' 1964.). M.: Nauka. 1968 (in Russian).
  43. Journal of The Franklin Institute. Special Issue on Sensitivity. 1981. V. 312. № 3/4. P.141–165; 167–177; 199–215.
  44. Ruban A.I. Koefficient chuvstvitel'nosti razryvnyh dinamicheskih sistem s zapazdyvaniem. Problemy upravleniya. 2011. № 4. S. 53–59 (in Russian).
Date of receipt: 28.11.2023
Approved after review: 14.12.2023
Accepted for publication: 15.01.2024