350 rub
Journal Science Intensive Technologies №1 for 2024 г.
Article in number:
Features of carbon nanotubes during the propagation of high-frequency current, taking into account the cylindrical symmetry
Type of article: scientific article
DOI: https://doi.org/10.18127/j19998465-202401-01
UDC: 621.3.049.779
Authors:

R.Kh. Amirov1, T.V. Tulaykova2, N.B. Shcherbak3

1, 2 All-Russian Institute of Scientific and Technical Information of the RAS (Moscow, Russia)
3 Mendeleev Russian Institute of Chemical Technology (Moscow, Russia)
2 tulaik@yandex.ru

Abstract:

The formulation of the problem is due to the emergence of new two-dimensional nanostructures with unique properties, in particular, for microelectronics problems. This article discusses the issue of the propagation of high-frequency currents in nanotubes of typical sizes.

The purpose of the study is to develop an algorithm for calculating possible delays in the operation of RF pulses due to material properties or conductor geometry.

The result is the development of an analytical model; here the analysis algorithm is presented and some estimates are made.

The practical significance lies in the importance of the issue of ensuring the rapid response of successive current pulses for high-quality signal recognition in order to avoid overlapping of adjacent pulses.

Pages: 5-14
For citation

Amirov R.Kh., Tulaykova T.V., Shcherbak N.B. Features of carbon nanotubes during the propagation of high-frequency current, taking into account the cylindrical symmetry. Science Intensive Technologies. 2024. V. 25. № 1. P. 5−14. DOI: https://doi.org/10.18127/ j19998465-202401-01 (in Russian)

References
  1. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004. V. 306. P. 666–669. 22
  2. Demidov A.A., Rybalka S.B. Sovremennye i perspektivnye poluprovodnikovye materialy dlya mikroelektroniki sleduyushchego desyatiletiya (2020–2030 gg.). Prikladnaya matematika & Fizika. 2021. T. 53, № 1. S. 53–72. DOI 10.52575/2687-0959-2021-53-1-53-72.
  3. Khan Z.H., Kermany A.R., Öchsner AIacopi. F. Mechanical and Electromechanical Properties of Graphene and their Potential Applications in MEMS. Journal of Physics D Applied Physics. 2017. V. 50. № 5. P. 053003. DOI: 10.1088/1361-6463/50/5/053003
  4. Frank S., Poncharal P., Wang Z.L., Walt A. de Heer. Carbon Nanotube Quantum Resistors. Science. 1998. V 280. P. 1744. DOI: 10.1126/science.280.5370.1744
  5. Volovich A. Nanotrubka kak volnovod. MANS. 2015. https://my.mail.ru/community/kreweo/09ECF585BC09FAB5.html (in Russian).
  6. Lebedeva O. S., Lebedev N. G., Lyapkosova I.A. P'ezoprovodimost' hiral'nyh uglerodnyh nanotrubok v ramkah sil'noj svyazi. Matematicheskaya fizika i komp'yuter. modelirovanie. 2018. T. 21. № 1. S. 53–63. DOI: https://doi.org/10.15688/mpcm.jvolsu.2018.1.6 (in Russian).
  7. Sudorgin S.A., Lebedev N.G. Differencial'naya termoEDS uglerodnyh nanotrubok tipa “zigzag” vo vneshnem elektricheskom pole. Fizika tverdogo tela. 2020. T. 62. Vyp. 10. S. 1710–1714. DOI: https://doi.org/10.21883/FTT.2020.10.49926.055 (in Russian).
  8. Davydov S.Yu., Posrednik O.V. Model' kontakta dvumernogo metalla i grafenopodobnogo soedineniya s uchetom ih vzaimodejstviya. Fizika i tekhnika poluprovodnikov. 2021. T. 55. № 7. S. 578–583. DOI: https://doi.org/10.21883/FTP. 2021.07.51020.9559 (in Russian).
  9. Nantero, USA. 2023. Nantero NRAM – Memory technology that is incredibly fast. https://www.nantero.com/
  10. Tolstov I.O. Raschet elektronnoj provodimosti ploskoj uglerodnoj nanostruktury na osnove modeli vodorodopodobnogo atoma. Preprinty IPM im. M.V. Keldysha. 2020. № 69. 20 s. http://doi.org/10.20948/prepr-2020-69 (in Russian).
  11. Gudkov A.G., Vetrova N.A., CHizhikov S.V. Metodologicheskie aspekty tekhnologii priborostroeniya: metody mashinnogo obu-cheniya i iskusstvennyj intellekt dlya razrabotki i proizvodstva geterostrukturnyh SVCH-priborov. Nanotekhnologii: raz-rabotka, primenenie – XXI vek. 2023. № 3. S. 47–56 (in Russian).
  12. Fejnman R. KED Strannaya teoriya sveta i veshchestva. M.: Kvant. 1988. 149 s. (in Russian).
  13. Rozet T.A. Elementy teorii cilindricheskih funkcij s prilozheniyami v radiotekhnike. Sov. Radio. 1956. 223 s. (in Russian).
  14. Abramovic M., Stigan I. Spravochnik po special'nym funkciyam s formulami, grafikami i matematicheskimi tablicami. M.: Nauka. 1979. 830 s. (in Russian).
  15. Tulajkova T.V., Amirova S.R. Vvodnyj kurs po special'nym funkciyam dlya aspirantov-fizikov. M.: VINITI Kniga i biznes. 2009. 153 s. (in Russian).
  16. Landau L.D., Lifshic E.M. Statisticheskaya fizika. V. M.: Fizmatlit. 2010. 616 s. (in Russian).
  17. Nefedov V.S. Raspredelenie Maksvella i skorosti dvizheniya chastic v dvumernoj srede. Vestnik UgGTU. 2012. № 3. S. 14–17 (in Russian).
Date of receipt: 13.11.2023
Approved after review: 22.11.2023
Accepted for publication: 15.01.2024