350 rub
Journal Science Intensive Technologies №7 for 2023 г.
Article in number:
Pumping source of precision technological laser
Type of article: scientific article
DOI: https://doi.org/10.18127/j19998465-202307-03
UDC: 521.3.049.776
Authors:

E.V. Vasilev1, M.V. Pokrovskay2, V.I. Kozlov3

1–3 MIREA – Russian Technological University (Moscow, Russia)
1 strong41@mail.ru,2 mar-pokrovskaya@yandex.ru,3 kozlov380@yandex

Abstract:

An urgent task of electronic technology at the present time is to reduce the size of the equipment with a simultaneous increase in its functionality. At the same time, the technology of production of microcircuits and microprocessors is in the first place, the importance of which has increased immeasurably due to the widespread use of new products in the defense industry.

The main technological process in the manufacture of microcircuits is the creation of a planar pattern on a silicon or dielectric substrate by removing a conductive layer from its surface. For this purpose, radiation technologies of evaporation of film coatings under the influence of focused radiation from a coherent source of a powerful pulsed laser of the optical and infrared range are used. The accuracy of manufacturing a topological drawing of a micro-product depends on the stability of the parameters of the evaporator radiation: power, pulse repetition frequency, temporal and spatial characteristics of the heating area, temperature stability. Therefore, information about these characteristics and how to manage them is important for improving the quality of manufactured microelectronic products.

To investigate the possibility of increasing the stability of solid-state laser radiation by using monopulse optical pumping implemented in a power source with double ignition of a xenon lamp.

The possibility of using monopulse optical pumping to excite the active medium of a solid-state optical generator has been investigated. An electrical scheme is proposed for the implementation of a double ignition mode with a significant increase in the peak power of the technological laser radiation. Images of the surface temperature field in the focal plane are obtained, which makes it possible to increase the contrast of the topological pattern and, accordingly, the density of the electronic components.

The results obtained can be used in the technology of manufacturing nanometer printed circuit boards and chips with high resolution and in the processes of local temperature exposure during recrystallization.

Pages: 24-31
For citation

Vasiliev E.V., Pokrovskaya M.V., Kozlov V.I. Pumping source of precision technological laser. Science Intensive Technologies. 2023.
V. 24. № 7. P. 24−31. DOI: https://doi.org/10.18127/ j19998465-202307-03 (in Russian)

References
  1. Arutyunyan N.B., Baranov V.Yu., Balashov L.A. i dr. Vozdejstvie lazernogo izlucheniya na materialy. M.: Nauka. 1999. 367 s. (in Russian)
  2. Vinogradov B.A., Dejstvie lazernogo izlucheniya na polimernye materialy; nauchnye osnovy i prikladnye zadachi. Kniga 2. Polimernye materialy. M.: Nauka. 2007. 315 s. (in Russian).
  3. Tarasov L.V. Fizika lazera. M.: Knizhnyj dom «Librokom». 2011. 310 s. (in Russian).
  4. Zverev G.M. i dr. Lazery na alyumoittrievom granate s neodimom. M.: Radio i svyaz'. 1985. 144 s. (in Russian).
  5. Haranzhevskij E.V., Krivilev M.D. Fizika lazerov, lazernye tekhnologii i metody matematicheskogo modelirovaniya lazernogo vozdejstviya na veshchestvo: Ucheb. posobie. Pod obshch. red. P.K. Galenko. Izhevsk: Izd-vo «Udmurtskij universitet». 2011. 187 s. (in Russian).
  6. Vasil'ev E.V., Galeev A.P., «Izmerenie secheniya inducirovannogo izlucheniya ionov neodima v K5Nd(MoO4)4 po sbrosam lyuminescencii v rezhime modulyacii dobrotnosti. Materialy mezhdunarodnogo nauchno-metodicheskogo seminara «Flyuktuacionnye i degradacionnye processy v poluprovodnikovyh priborah». M.: MEI, MIREA. 2012. 209–214 s. (in Russian).
  7. Lomaev M.I., Rybka D.V., Baksht E.H., TarasenkoV.F. i dr. Harakteristiki izlucheniya impul'snogo razryada v ksenone. Zhurnal tekhnicheskoj fiziki. 2005. T. 75. Vyp. 2. 04.07.12 (in Russian).
  8. Vasil'ev E.V., Kurenkov V.V. Vremennaya i chastotnaya kinetika sostavlyayushchih opticheskogo spektra razryada v ksenone. III Mezhdunar. nauch.-prakt. konferenciya «Aktual'nye problemy i perspektivy razvitiya radiotekhnicheskih i infokommunikacionnyh sistem». M.: Moskovskij tekhnologicheskij universitet (MIREA). 2018. 6 s. (in Russian).
  9. Zverev G.M., Kuratev I.I., Onishchenko A.M. Peredacha energii vozbuzhdeniya mezhdu ionami trekhvalentnyh redkozemel'nyh elementov v kristallah. Kvantovaya elektronika. 1975. T. 2. № 3. S. 469–481 [Sov J Quantum Electronic. 1975. V. 5. № 3. P. 267–274] (in Russian).
  10. Koval'chuk V.V., Leshchenko O.I., Osipenko O.V. Vnutrennyaya energiya i davlenie plazmy v kanale elektricheskogo razryada. Trudy Odesskogo politekhnicheskogo universiteta. 2008. Vyp. 2(30). 7 s. (in Russian)
  11. Menushenkov A.P., Nevolin V.N., Petrovskij V.N. Fizicheskie osnovy lazernoj tekhnologii: Ucheb. posobie. M.: NIYaU MIFI. 2010. 212 s. (in Russian)
  12. Vasil'ev E.V., Pokrovskaya M.V., Men'shikova D.F. (MIREA), Metodika podbora i rascheta energeticheskih harakteristik tekhnologicheskogo lazera v impul'snom rezhime. Kachestvo. Innovacii. Obrazovanie. 2019. № 4. S. 26–32 (in Russian).
  13. Vasil'ev E.V., Sokolova O.V. Generacionnye harakteristiki tverdotel'nogo OKG pri impul'snoj nakachke. Mater. 55-j nauch.-tekhn. konf. MIREA. Moskva. 2006 (in Russian).
Date of receipt: 10.08.2023
Approved after review: 24.08.2023
Accepted for publication: 18.09.2023