350 rub
Journal Science Intensive Technologies №7 for 2023 г.
Article in number:
Research of the conditions for the formation of thin films of aurum on thermal control coatings of spacecraft
Type of article: scientific article
DOI: https://doi.org/10.18127/j19998465-202307-02
UDC: 629.76/.78.023.222
Authors:

A.A. Dodunov1, A.V. Lukyanenko2, S.G. Kochura3, I.A. Maksimov4, A.B. Nadiradze5, V.A. Smirnov6, R.E. Tihkomirov7

1,5 Moscow Aviation Institute (National Research University) (Moscow, Russia)
2 Kirensky L.V. Institute of Physics of Siberian Branch of the Russian Academy of Sciences (Krasnoyarsk, Russia)
3,4,6,7 Academician M.F. Reshetnev Informational Satellite Systems (Zheleznogorsk, Russia)
1 lexadudunov489@mail.ru, 2lav@iph.krasn.ru, 3kochura@iss-reshetnev.ru, 4mia@iss-reshetnev.ru, 5 nadiradze@mai.ru, 6 smirnov@iss-reshetnev.ru, 7tikhroman@iss-reshetnev.ru

Abstract:

Problem definition – the problem on estimation reliability is topical when we estimate thermal control coating of spacecraft contamination by the sputtered products of retiform cloth forming radio-reflecting surfaces of antenna reflector. The deposition model should describe the regularities of contamination film formation by considering deposited particles flows and surfaces temperatures.

Goal – to increase the reliability of the model for aurum deposition onto thermal control coating of ОСО-С type according to the experimental information under conditions close to the flight ones for the spacecraft.

Results – obtained the contamination film with thickness ranging from 0,16 up to 3,5 nm under different parameters of its formation (flow density of deposited particles in the range from 1014 up to 1017 m-2s-1, samples ‘temperature in the range from +20 до +110°С). Spectral performances of the radiated samples were examined. The roughness of the samples with contamination film was studied with the help of scanning microscope. The chemical composition of contamination films was examined by X-ray fluorescence analysis. The review of works describing the processes of formation of thin films of contamination and there features is carried out. The dependence of change in the absorption coefficient of solar radiation As of thermal control coating of ОСО-С type on the thickness of aurum contamination film is obtained under super small flows of deposited particles.

Practical value – it is revealed that under flight conditions the process of sputtered products of retiform cloth deposition to the surfaces of thermally controlling coating of ОСО-С type will occur under implementing particle flow densities and surface temperature. It is also experimentally confirmed that the contamination films formed under super small deposition rates are characterized by increased granularity and as a result by lower conductivity and lower variation (degradation) of absorption coefficient of solar radiation.

Pages: 15-23
For citation

Dodunov A.A., Lukyanenko A.V., Kochura S.G., Maksimov I.A., Nadiradze A.B., Smirnov V.A., Tihkomirov R.E. Research of the conditions for the formation of thin films of aurum on thermal control coatings of spacecraft. Science Intensive Technologies. 2023. V. 24. № 7. P. 15−23. DOI: https://doi.org/10.18127/ j19998465-202307-02

References
  1. Chirov A.A. Kriticheskie usloviya kondensacii metallicheskih rabochih tel ERD na poverhnostyah KA. Zhurnal kosmicheskie issledovaniya. 2006 T. 44. № 2 (in Russian).
  2. Platnik L.S., Komnik Yu.F. O kriticheskoj temperature kondensacii Bi, Sb i Pb. Doklady AN SSSR. 1960 T. 134. № 2. S. 337–340 (in Russian).
  3. Platnik L.S., Komnik Yu.F. K voprosu o mekhanizme kondensacii metallov v vakuume. Doklady AN SSSR. 1959. T.124. № 4. S. 808–811 (in Russian).
  4. Hollend L. Nanesenie tonkih plenok v vakuume: Per. s angl. N.V. Vasil'chenko. M.; L.: Gosenergoizdat. 1963. 608 s. (in Russian).
  5. Mattox D.M., McDonald J.E. Interface Formation during Thin Film Deposition. Journal of Applied Physics. 1963. V. 34. Iss. 8.
  6. Chopra K.L. Thin film Phenomena. McGraw-Hill N.Y. 1969.
  7. Chapman B.N., Campbell D.S. Condensation of high-energy atomic beams. Journal of Physics C Solid State Physics. 1969. V. 2. Iss. 2.
  8. Puha V.E., Mihajlov I.F., Drozdov A.N., Fomina L.P. Zavisimost' koefficienta kondensacii vismuta ot energii chastic, osazhdaemyh iz ionnogo puchka na kremnievye podlozhki. Fizika tverdogo tela. 2005. T. 47. Vyp. 3 (in Russian).
  9. Brekhovskih L.M. Volny v sloistyh sredah. AN SSSR. 1957 (in Russian).
  10. Kaplan A.E. Ob otrazhatel'noj sposobnosti metallicheskih plenok v SVCh- i radiodiapazone. RE. 1964. № 10. S. 1781–1787 (in Russian).
  11. Korolev F.A., Gridnev V.I. Propuskanie elektromagnitnyh voln tonkimi plenkami serebra. RE. 1965. S. 1718–1719 (in Russian).
  12. Antonec I.V. Otrazhayushchie i provodyashchie svojstva tonkih metallicheskih plenok i ih nanostruktura: Diss. … kand. fiz.-mat. nauk. Syktyvkarskij gosudarstvennyj universitet. Chelyabinsk, 2004 (in Russian).
  13. Nadiradze A.B., Panasova G.V., Rahmatullin R.R., Smirnov V.A. Degradaciya termoreguliruyushchih pokrytij kosmicheskih apparatov pri osazhdenii na nih tonkih plenok zolota. Fizika i himiya obrabotki materialov. 2019. № 1. S. 35–42 (in Russian).
  14. Nauchno-tekhnologicheskaya infrastruktura Rossijskoj Federacii: oficial'nyj sajt. Moskva. URL: https://ckp-rf.ru/catalog/usu/73590/ (data obrashcheniya 04.05.2023) (in Russian).
Date of receipt: 10.08.2023
Approved after review: 24.08.2023
Accepted for publication: 18.09.2023