350 rub
Journal Science Intensive Technologies №4 for 2023 г.
Article in number:
Prospects for enhancing the information capabilities of the over-the-horizon radar in terms of detecting airborne objects by placing a vertical ionospheric sounding station in the vicinity of the top of the first skip
Type of article: scientific article
DOI: https://doi.org/10.18127/j19998465-202304-04
UDC: 621.396.969.34
Authors:

G.N. Tkachev1, V.A. Novobranets2, E.V. Kuznecov3, A.V. Chestnyh4

1–3JSC “Research and Production Complex” Research Institute of Long-Range Radio Communications” («NPK «NIIDAR») (Moscow, Russia)
4 Moscow State University of Technology and Management G.K. Razumovsky, (Moscow, Russia)
 

Abstract:

Radars for over-the-horizon detection (OTHR) are used to assess the air situation on the distant approaches to the national borders of the state. The most important characteristics of the air situation is the flight speed and altitude of observed air objects. Unfortunately, one of these parameters (flight altitude) is not measured in operating OTHR. In existing radars, only the distance (along the beam) to an air object, “Doppler velocity” and azimuth to an air object are measured.

Objective – to analyze the possibilities of estimating the flight altitude of an air object at large (over-the-horizon) ranges when implementing a new generation of elevation angle measurements (the angle of arrival of the echo signal at the receiving antenna) on the OTHR and retrofitting the OTHR with means of operational diagnostics of ionospheric parameters at the top of the first skip.

A technique for estimating the altitude of an air object flight for the simplest scheme of over-the-horizon radar has been developed: combined receiving and transmitting positions of the OTHR, a single-layer spherically layered ionosphere, and a vertical ionospheric sounding station is located in the area of the first skip. The requirements for the accuracy of measuring the parameters necessary for estimating the flight altitude of the air object are estimated: the range (along the beam) to the air object, the elevation angle (the angle of arrival of the echo signal at the receiving antenna), the height of the point of reflection of the radar signal from the ionosphere.

The results of the study open up additional possibilities for a new generation of OTHR for classifying air objects by flight altitude at distant approaches to a national border.

Pages: 27-35
References
  1. Dzhuzeppe A. Fabricio. Vysokochastotnyj zagorizontnyj radar: osnovopolagayushchie principy, obrabotka signalov i prakticheskoe primenenie. M.: TEKHNOSFERA. 2018. 936 s. (in Russian).
  2. Akimov V.F., Kalinin Yu.K. Vvedenie v proektirovanie ionosfernyh zagorizontnyh radiolokatorov. Pod red. S.F. Boeva. M.: TEKHNOSFERA. 2017. 491 s. (in Russian).
  3. Saillant S., Auffray G., Dorey P. Exploitation of elevation angle control for a 2 – D HF skywave radar, Proceedings of the International Conference on Radar (RADAR 2003), Adelaide, Australia on 3–5 September 2003.
  4. Tkachev G.N., Karpenko O.V., Suchkov A.E., Shvedov V.N. Vozmozhnosti realizacii izmerenij ugla mesta v zagorizontnoj RLS prostranstvennoj volny. Naukoemkie tekhnologii. 2022. T. 23. № 5. S. 34–40. DOI: https://doi.org/10.18127/j19998465-202205-05
  5. Krasavin S.Yu., Sobolev A.A. Vozmozhnosti utochneniya koordinat obnaruzhivaemyh ob"ektov pri mnogomodovom rasprostranenii radiovoln. Naukoemkie tekhnologii. 2022. T. 23. № 5. S. 7–15 (in Russian). DOI: https://doi.org/10.18127/j19998465-202205-02
  6. RD 52.26.817-2015 Rukovodstvo po ionosfernym, magnitnym i geliogeofizicheskim nablyudeniyam. Chast' I ionosfernye nablyudeniya. FGBU «VNIIGMI-MCD». 2015 (in Russian).
  7. Chernyj F.B. Rasprostranenie radiovoln. Izd. 2-e, dop. i pererab. M.: Sov. radio. 1972. 464 s.
  8. Krasnov V.M. Influence of ionospheric conductivity on parameters of a radio wave at a reflection point. Radio Science. 2002. T. 37. № 6. S. 111–115 (in Russian).
Date of receipt: 26.01.2023
Approved after review: 06.02.2023
Accepted for publication: 28.04.2023