350 rub
Journal Science Intensive Technologies №3 for 2023 г.
Article in number:
Modernization of the quasi-monolithic microwave integrated circuit power ampifier
Type of article: scientific article
DOI: https://doi.org/10.18127/j19998465-202303-02
UDC: 621.3.049.77.029.64
Authors:

V.A. Iovdalskiy1, N.V. Ganiushkina2, V.P. Marin3, I.N. Ayupov4, P.A. Storin5

1,2,4,5 JSC «RPC “Istok” named after Shokin» (Moscow region, Fryazino, Russia)
3 MIREA – Russian Technological University (Moscow, Russia)
 

Abstract:

Due to the difficulties, which were caused by the sanctions restrictions, in acquiring imported electronic components like, for example, a 70 W GaN transistor made in the USA, it is impossible to arrange the purchase of these transistors and the production of power amplifiers with the use of them in Russia. In order to implement the production of similar microwave power amplifiers in our country, it is necessary to modernize the design of the amplifier using the available components. For this purpose, the expertise of Russian specialists of past years in the development of microwave hybrid integrated circuits was used. In particular, in order to improve the electrical and weight-size characteristics of power amplifiers, it has been proposed to replace the wire connections of the contact pads of the transistor chip together with the conductors of the passive part of the amplifier input and output matching with their group bonding using flat beam leads made of 8-μm galvanically deposited gold layer. This allows not only to reduce the spurious inductance of the connections and thereby improve the electrical characteristics of the amplifier, but also to reduce the dimensions of the amplifier, and hence improves the weight-size characteristics. A second technical solution that may be useful in this case is the use of a composite two-tier MESFET, in which the 70 W GaN transistor, manufactured in the USA, is replaced by two smaller transistor chips of, for example, 35 W connected in parallel, one chip over the other. This makes it possible to modernize the design of the power amplifier using more affordable electronic component base of lower power and improve its weight-size characteristics. The obtained research results show that the use of flat beam leads alone can reduce the dimensions of the power amplifier by 45% and, with additional use of two composite 35 W chip transistors, the dimensions can be reduced by 60%. Conducted thermal calculations indicate that the maximum heating of GaN transistors in the composite transistor is 234 °C, which provides the margin of 66 °C above the maximum operating temperature. An increase in the heat conductivity of the additional heat sink from 250 W/(m K) to 2000 W/(m K), which is ensured by changing its material from MD-50 to Diamond of proper heat conductivity, leads to a decrease in the maximum temperature difference in the structure by more than 2,5 times: from 234 °C to 88 °C. The rate of the decrease in temperature difference is not the same for different materials of the additional heat sink. It gradually decreases with an increase in its heat conductivity. With high heat conductivities of the additional heat sink, the materials of the proposed designs of MESFET chips give virtually the same values of the maximum temperature difference in the structure. For MD-50 it is 17 °C, and for diamond with 2000 W/(m K) heat conductivity it is only 2.5 °C.

Pages: 12-22
For citation

Iovdalskiy V.A., Ganiushkina N.V., Marin V.Р., Ayupov I.N., Storin P.A. Modernization of the quasi-monolithic microwave integrated circuit power ampifier. Science Intensive Technologies. 2023. V. 24. № 3. P. 12−22. DOI: https://doi.org/ 10.18127/j19998465-202303-02 (in Russian)

References
  1. Jeong J. et al. Quasi-MMIC high power amplifier with Silicon IPD matching network. Proceedings of the 48th European Microwave Conference. 2018.
  2. Data Sheet CGHV1J070D, 2020.
  3. Kvazimonolitnyj 70-vattnyj usilitel' moshchnosti dlya RLS H-diapazona. Inf. sbornik. Novosti SVCH-tekhniki. 2021. № 1. S. 9–15.
  4. Iovdal'skij V.A., Pchelin V.A. Vyvodnaya ramka dlya SVCH i KVCH poluprovodnikovogo pribora. Patent RF №2191492 na izobretenie, pri-oritet 17.04.2000 g., MPK5 N01L 23/48, registraciya v gosreestre izobre-tenij 10.06.2002 g.
  5. Iovdal'skij V.A., Savon E.N., SHCHeglova I.A. Sposob izgotovleniya vyvodnyh ramok. Patent RF № 2183366 na izobretenie, priori-tet17.04.2000 g., MPK6 N01L 23/48, registraciya v gosreestre izobretenij 10.06.2002 g.
  6. Iovdal'skij V.A., Vinogradov V.G., Moldovanov YU.I., Morgunov V.G. Primenenie vyvodnyh ramok balochnyh vyvodov poluprovodnikovyh priborov dlya uluchsheniya harakteristik GIS SVCH-diapazona. Elektronnaya tekhnika. Ser. 1. SVCH-tekhnika. 2005. Vyp. 2(486). S. 27–33. (in Russian)
  7. GaN/SiC MIS-usilitel' s vyhodnoj moshchnost'yu 27,5 dBm v polose rabochih chastot 1…42 GGc. Inf. sbornik. Novosti SVCH-tekhniki. 2022. № 7. S. 11–13. (in Russian)
  8. 50-vattnyj GaN-usilitel' s KPD 55% v razrabotke v'etnamskih specialistov. Inf. sbornik. Novosti SVCH-tekhniki. 2021. № 1. S. 14–18. (in Russian)
  9. GaN MIS-usilitel' H-diapazona v razrabotkah tureckih specialistov. Inf. sbornik. Novosti SVCH-tekhniki. 2021. № 3. S. 23–27.
  10. Iovdal'skij V.A., Pchelin V.A., Lapin V.G., Morgunov V.G. Moshchnaya gibridnaya integral'naya skhema SVCH-diapazona. Patent RF №2298255 na izobretenie, prioritet 12.08.2005 g., MPK5 N01L 23/48, registraciya v gosreestre izobretenij 27.04.2007 g.
  11. Iovdal'skij V.A. Novaya koncepciya slozheniya moshchnosti kristallov PTSH v GIS usilitelej moshchnosti SVCH-diapazona. Elektronnaya tekhnika. Ser. 1. SVCH-tekhnika. 2006. Vyp. 1(487). S. 44–51.  (in Russian)
  12. Iovdal'skij V.A., Fut'yanov S.V., Lisicin A.A., Levashov A.V., Morgunov V.G., Gerasimenko S.V., Ayupov I.N., Kilichenkov R.B. Uluchshenie elektricheskih harakteristik shirokopolosnyh GIS SVCH za schyot optimizacii vnutriskhemnyh soedinenij. «Intermatic-2012». Materialy Mezhdunar. nauchno-tekhn. konf. «Fundamental'nye problemy radioelektronnogo priborostroeniya». 3–7 dekabrya 2012 g. M.: MIREA. 2012. S. 130–132.
  13. Iovdal'skij V.A., Manchenko L.V., Morgunov V.G., Gerasimenko S.V., Kilichenkov R.B. Dal'nejshee sovershenstvovanie geometrii ploskih balochnyh vyvodov komponentov GIS SVCH-diapazona. «Intermatic-2013». Materialy Mezhdunar. nauchno-tekhn. konf. «Fundamental'nye problemy radioelektronnogo priborostroeniya». 2–6 dekabrya 2013 g. M.: MIREA. 2013. S. 148–153.
  14. Iovdal'skij V.A., Dudinov K.V., Morgunov V.G., Kudrova T.S. Vyvodnaya ramka dlya mnogokristal'nogo poluprovodnikovogo pribora SVCH. Patent RF № 2541725, prioritet 23.07.2013 g. MPK6 N01L 23/48, data registracii v gosreestre izobretenij 15.01.2015 g. 
  15. Iovdal'skij V.A., Lapin V.G., Pchelin V.A. Dvuh"yarusnaya tranzistornaya sborka dlya usilitelej moshchnosti SVCH-diapazona. Elektronnaya tekhnika. Ser. 1. SVCH-tekhnika. 2009. Vyp. 4(503). S. 38–41. (in Russian)
  16. Iovdal'skij V.A., Pchelin V.A., Lapin V.G. Sostavnoj dvuh"yarusnyj tranzistor dlya usilitelej moshchnosti SVCH-diapazona. Elektronnaya tekhnika. Ser. 1. SVCH-tekhnika. 2010. Vyp. 4(507). S. 65–71.  (in Russian)
  17. Iovdal'skij V.A., Manchenko L.V., Sokolov I.A. Vnutriskhemnye soedineniya v GIS SVCH-diapazona: Ucheb. posobie / pod red. A.A. Borisova. M.: KURS. 2019. S. 128.
  18. Iovdal'skij V.A., Ganyushkina N.V., Marin V.P., Sokolov I.A. Teplovoj analiz raboty moshchnoj GIS SVCH-diapazona. Naukoyomkie tekhnologii. 2017. Vyp. 2. T. 18. S. 23–31. (in Russian)
  19. Ispol'zovanie plastin «GaN-na-almaze» dlya izgotovleniya moshchnyh SVCH-priborov. Inf. sbornik. «Novosti SVCH-tekhniki». 2019. № 4. S. 1–6. (in Russian)
Date of receipt: 20.02.2023
Approved after review: 01.03.2023
Accepted for publication: 15.03.2023