A.P. Kadochnikov1, V.Y. Prorok2, D.S. Osadchay3, S.V. Sotnikov4
1–4 A.F. Mozhaisky Military Space Academy (St. Petersburg, Russia)
The continuous increase in the number of maneuvering objects (MO) caused by the intensive deployment of multi-satellite groupings (MG) of spacecraft (SC) creates objective difficulties for the functioning of information surveillance tools. At the same time, ensuring a given level of characteristics of information means is one of the main tasks of the near-Earth space surveillance System (OKP). In the near future, the number of SC in MG will increase, up to tens of thousands.
Currently, the problem of multiplication and distortion of trajectory parameters when detecting and tracking the flow of spacecraft from the MG composition at the stages of launching into orbit and subsequently withdrawing from it is the reason for the incorrect classification of observation objects.
Goal. To improve the system of trajectory processing of information surveillance tools in order to reduce the number of false trajectories formed during the processing of coordinate information from a large group of simultaneously observed MO (forming a cluster of small-sized targets) moving along close trajectories.
The content and results of improving the process of tracking by information means of observation of spacecraft (spacecraft) from the multi-satellite grouping (MG), which performs continuous maneuvering during movement to the target orbit, using fuzzy cluster analysis, are presented. It is shown that the developed method makes it possible to significantly reduce the number of false trajectories being tied, to increase the effectiveness of the process of identifying each of the obtained marks belonging to a group of closely located MO observed with one or another accompanied trajectory. The efficiency of the proposed method is evaluated in various conditions of the interference situation.
The results of the work can be used to refine algorithmic and mathematical solutions in the trajectory processing system of information surveillance tools.
Kadochnikov A.P., Prorok V.Y., Osadchay D.S., Sotnikov S.V. Method of identifying marks formed from a group of maneuvering objects based on fuzzy cluster analysis. Science Intensive Technologies. 2023. V. 24. № 2. P. 44−51. DOI: https://doi.org/10.18127/j19998465-202302-06
(in Russian)
- Konovalov A.A. Osnovy traektornoj obrabotki radiolokacionnoj informacii. Ch.1. SPb.: SPbGU. 2013. 163 s. (in Russian).
- Prorok V.Ya., Kadochnikov A.P., Osadchaya D.S. Modelirovanie processa razvertyvaniya mnogosputnikovoj gruppirovki nizkoorbital'nyh kosmicheskih apparatov. Izv. Tul'skogo gosudarstvennogo universiteta. 2022. Vyp. 2. S. 339–347 (in Russian).
- Kadochnikov A.P., Erohin V.I., Osadchaya D. S., Smirnov M.S., Sotnikov S.V. Metodika ocenivaniya vliyaniya oshibok pervichnyh izmerenij na tochnost' algoritma opredeleniya parametrov orbity kosmicheskih ob"ektov. Izv. Tul'skogo gosudarstvennogo universiteta. 2021. Vyp. 9. S. 253–261 (in Russian).
- Kadochnikov A.P., Erohin V.I., Kakaev V.V. Metod opredeleniya parametrov orbity kosmicheskih ob"ektov po izmereniyam na malyh intervalah vremeni. Trudy Voenno-kosmicheskoj akademii im. A.F. Mozhajskogo. 2022. Vyp. 682. S. 60–69 (in Russian).
- Murzova M.A., Farber V.E. Sravnenie sposobov kompensacii skorostnoj oshibki po dal'nosti v algoritmah ocenki dal'nosti i radial'noj skorosti. Radiotekhnika. 2019. № 4. S. 5−18. DOI: 10.18127/j00338486-201904-01 (in Russian).
- Prorok V.Ya. Osnovy postroeniya i organizacii adaptivnyh sistem professional'nogo otbora – SPb.: Lan'. 2003. 330 s. (in Russian).
- Zade L.A. Razmytye mnozhestva i ih primenenie v raspoznavanii obrazov i klaster-analize: Klassifikaciya i klaster. M.: Mir. 1986. 247 s. (in Russian).
- Plas Dzh. Vander Python dlya slozhnyh zadach: nauka o dannyh i mashinnoe obuchenie. SPb.: Piter. 2021. 576 s. (in Russian).