350 rub
Journal Science Intensive Technologies №8 for 2022 г.
Article in number:
About the physical mechanism of the scandalous cathode
Type of article: scientific article
DOI: https://doi.org/10.18127/j19998465-202208-01
UDC: 621.396.67
Authors:

N.Ya. Rukhlyada1, V.P. Marin2

1 National Research Nuclear University "MEPHI" (Moscow, Russia)
2 MIREA – Russian University of Technology (Moscow, Russia)
 

Abstract:

To generate electromagnetic waves of the ultrahigh frequency (microwave) range, free electrons are needed. Heated bodies can serve as a source of such electrons. For these purposes, effective thermocathodes have been developed in radio electronics, one of the types of which are metal-porous cathodes (MPCs). For several decades, this type of cathodes have been used in the design of various radar devices. The output parameters of such devices, such as durability, power, and frequency characteristics depend on the reliability of the electron source cathode. In the process of using MPG, it was necessary to increase the cathode emission current density. Work on improving the IPC was carried out all the time. Patented by the Soviet scientist Figner in the sixties of the last century, the cathode containing scandium in a porous matrix showed unique emission properties and found application in instrumentation. The low work output (high emission) caused irteres among the researchers. The efforts undertaken did not lead to the construction of a generally accepted model of the mechanism of operation of the scandate cactode.

The purpose of the work. An attempt to create a model explaining the mechanism and the daring work of the output of the scandate cathode.

A brief literature review of the standard cathode is made.The modern idea of the cathode output operation, depending on the volumetric and surface properties of the substance, is formulated. It is shown that the dipole barrier on the surface plays an essential role in the formation of the output operation. Experimental and theoretical data on the values of surface barriers of a number of elements are presented. The low value of the scandium surface barrier was noted. Being on the surface of a metal-porous cathode, as part of a tungsten sponge, scandium, having a surface barrier value of 2.05 eV, makes a significant contribution to the emission.

It is proposed to produce a metal-porous cathode with a yttrium content in a tungsten sponge having a surface barrier value of 2.85 eV.

Pages: 5-14
For citation

Rukhlyada N.Ya., Marin V.P. About the physical mechanism of the scandalous cathode. Science Intensive Technologies. 2022. V. 23. № 8. P. 5−14. DOI: https://doi.org/10.18127/j19998465-202208-01 (in Russian)

References
  1. Figner A., Soloveichik A., Judinskaya I. Metal Porous Body Having Filled with Barium Scandate. US Paqtent, fild 10 – 1964 granted 12 – 1967.
  2. Gartner G., Geitner P., Ludtih H., Ritz A. Emission properties f top layer scandate cathodes by lad. Appl.Surf. Sci. 1997. III. P. 11–17.
  3. Surface Alloing by Ion Electron and Laser beams. Papers presented of 1983 ASM Materials Science Seminar. American Society for Metals Park., Ohio, 44073/American Society for Metals Park., Ohio, 44073/GPNTB, MR 8, C. 128–89; 117/89, J 2/19496.
  4. Zagwijn P.M., Frenken J.W.M., Sloten U.,Duine P.A. A model System for scandate cathodes. Applied Surface Science. 1997. V. III.
    P. 35–41.
  5. Norman D., Tuck R.A., Skinner H.B., Wardsworth P.J., Gardiner T.M., Owen I.W., Richardson C.H., Thornton G. Phys. Rev. Lett. 1987. V. 58. P. 519–523.
  6. Shih A., Hor S. E., Cam W., Kerkland J. Phys. Rev. B. 1991. V. 44. P. 5818–5823.
  7. Magnus S.H., Hill D.N., Ohlinger W.L. Emission Properties of compaunds in ther BaO∙Sc2O3∙WO3 ternary system. Appl. Surf. Sci. 1997. V. III. P. 42–49.
  8. Gartner G., Geittner P., Raash D. Low temperature and cold emission of scandate cathodes. Appl. Surf. Sci. 2002. V. 201. P. 61–68.
  9. Gartner G., Geittner P., Raash D., Wiehert D.U. Supply and mechanismus of Ba dispenser cathodes. Appl. Surf. Sci. 1999. V. 146. P. 22–30.
  10. Wang Y., Pan T. Investigation of pulsed laser depositing Sc-coated cathode. Appl. Surf. Sci. 1999. V. 146. P. 61–68.
  11. Yamamoto A., Taguochi S., Aida T., Kawase S. Appl. Surf. Sci. 1989. V. 17. P. 504–509.
  12. Kapustin V.I., Li I.P., Shumakov N.V., Libedinskij Yu.Yu., Zabluckij A.V. Fizicheskij mekhanizm raboty skandatnyh kato-dov SVCh-priborov. ZhTF. 2017. T. 87. Vyp. 1. S. 106–116.
  13. Muller W. Work function for models of scandate surfaces. Appl. Surf. Sci. 1997. V. III. P. 30–34.
  14. Landau L.D., Lifshic E.M. Elektrodinamika sploshnyh sred. M.: Nauka. 1982. 620 s.
  15. Dostizheniya elektronnoj torii metallov. Pod red. P. Cishe, G. Lemanna. M.: Mir. 1984. T. 1–2.
  16. Teoriya neodnorodnogo elektronnogo gaza. Pod red. S. Lundkvista i N. Marcha. M.: Mir. 1987. 400 s.
  17. Helzel J., Schulte E.K., Wagnert H. Solid Surface Physics. Springer Tracts in Modern Physics/. Berlin – Heidelberg – New-York. 1979. V. 85–2218.
  18. Wigner E., Bardeen J. Theory of the Work Function of Monovalent Metals. Phes. Rev. 1935. V. 48. P. 84–88.
  19. Long N.D. Kohn W. Theory of Metal Surfaces: Work Function. Phys. Rev. 1971. B3. S. 1215–1219.
  20. Bardeen J. Theory of the Work Function II – The Surface Daubl Layer. Phys. Rev. 1936. V. 49. № 9. P. 661–674
  21. Smoluchowski R. Anisotropy of electronics Work Function of Metal. Phys. Rev. 1941. V. 60.
  22. Heine V., Hodges C.H. Theory of the Surface dipole nontransition metals. J. Phys. C. Solid. St. Phys. 1972. V. 5. P. 225–230.
  23. Taut M., Eschrig H., Schubert M. Surface Dipole Barrier of metals. Phys. Status Solidi (b ). 1980. V. 100. P. 242–250.
  24. Weinert H., Watsjn R.E. Phys Rev. 1983. V. B 29. P. 3001–3007.
  25. Moruzzi L., Jank J.F., Williams A.R. Calculated Electronic Properties of Metals. New York.: Pergamon. 1975. P. 188.
  26. Nemoshkalenko A.V., Antonov V.N. Metody vychislitel'noj fiziki v teorii tverdogo tela. Zonnaya teoriya metallov. Kiev: Naukova dumka. 1985. 407 s.
  27. Fomenko V.S. Emissionnye svojstva materialov: Spravochnik. Kiev: Naukova dumka. 1981. 339 s.
  28. Frenkel J. Uber die elektrische oberflachenschricht der Mttalle. Z. Phys. 1928. B 51. S232–238.
  29. Skriver H.L., Rosengaard N.M. Surface Energy and work Function of elemental metals. Phys. Rev. B. 1992. V. 46. № 11. P. 7157–7167.
  30. Vasil'ev B.V., Kaganoav M.I., Lyuboshic V.L. Sostoyanie elektronov provodimosti i rabota vyhoda metalla… UFN. 1994. T. 164. № 4. S. 375–378.
  31. Saito S., Takeda K., Soumura T., Ohki M., Tani T. Hysteresis of the Work Function of Co (0001) Surface Resulting from an Allo-tropic Transformation. J. Appl. Phys. 1992. V. 71. № 11. P/5500–5503.
  32. Ruhlyada N.Ya., Trefilov A.G., SHishkin B.B. Vliyanie fazovyh prevrashchenij na termoemissiyu gafniya i ruteniya. Izv. AN SSSR. Ser. Fiz. 1979. T. 43. № 9. S. 1837–1842.
  33. Ruhlyada N.Ya. Allotropicheskie prevrashcheniya v rutenii. Izv. vuzov. Ser. YAdernaya energetika. 1997. № 1. S. 46–50.
  34. Roukhlyada N.Ya., Samoilov S.G. Anomalies in the Temperature Dependens of the Work Function of Ruthenium Faces (1122) and (1125). Physica Scripta. 2000. V. 62. P. 341–343.
  35. Roukhlyada N.Ya. Phase Transitions and emission Properties Mettals. Phys. Scr. 81 (2010) 045701 (6pp).
  36. SHuppe G.N. Emissionnaya elektronika. M.: Moskovskij rabochij. 1974. 120 s.
  37. Maslennikov O.Yu., Ruhlyada P.N. Anizotropiya raboty vyhoda gafniya. Materialy HII nauch.-tekhn. konf. «Vakuumnaya nauka i tekhnika». Pod red. D.V. Bykova. M.: MIEM, 2005. S. 283–285.
  38. Maslennikov O.Yu., Ruhlyada N.Ya., Ruhlyada P.N., Samojlov S.G. Anizotropiya raboty vyhoda ruteniya. Vakuumnaya nauka i tekhnika: Materialy IH nauch.-tekhn. konf. M.: MIEM. 2002. S. 327–330.
  39. Ruhlyada Nikolaj. Fazovye perekhody i poverhnostnye svojstva allotropnyh metallov. LAP Lambert Academic Publishing. 2016. Germaniya. 204 c.
  40. Kreknell Ayu, Uong K. Poverhnost' Fermi. Angliya, 1973: Per s angl.. Pod red. V.Ya. Kravchenko. M.: Atomizdat. 1978. 352 s.
  41. Nieminnen R.M., Hodges C.H. Work Functions for Positrons in Metals. J. Phys. Rev. B 11. 113 (1975)
  42. Maslennikov O.Yu., Ushakov A.B. Effektivnye termokatody (konstrukcii i materialy) Ch. 2: Ucheb. posobie. MFTI. 2003. 129 s.
  43. Langmur I. The Nature of Adsorbed Films of Caesium on Tungsten. Part I. The Space Charge Sheath and the Image Force. Phys. Rev. 1933. V 43. P. 224.
  44. Dobrecov L.N., Gomoyunova M.V. Emissionnaya elektronika. M.: Nauka. 1966. S. 564.
  45. Sergeev D.I., Titkov A.S. Adsorbiruyushchie elektrody. M.: Energoizdat. 1982. 128 s.
Date of receipt: 10.10.2022
Approved after review: 19.10.2022
Accepted for publication: 22.11.2022