S.G. Vorona1, T.V. Kalinin2
1,2 Military Space Academy n.a. A.F. Mozhaisky (St. Petersburg, Russia)
The most rational way of working with constantly modified complexes of mathematical models is considered, namely, the formation of libraries of programs and tools for working with them.
The essence of the system method of synthesis of complexes of modeling programs is as follows. A set of software-implemented functions sufficient to create complexes of mathematical models of the studied problems is determined. Taking into account the time spent on the software implementation of the selected functions, the libraries of software components are set. Tools for the synthesis of models are being created that ensure the optimization of operational characteristics and take into account the limitations on the timing of the creation of a complex of modeling programs.
\The choice of the structure of the developed complexes of mathematical models is shown.
The task of choosing the structure of the mathematical models being developed is to divide MM into functionally complete algorithms in such a way as to achieve the maximum reduction in the time of modification of algorithms when implementing the next MM.
The problem of developing control structures and its solution with the use of one of the algorithms, the formation of libraries of software components, as well as the possibility of multiple reuse of library data providing a significant cost gain when creating the next modifications of complexes of modeling programs is shown.
Vorona S.G., Kalinin T.V. Synthesis of modeling programs based on multi-version component libraries. Science Intensive Technologies. 2022. V. 23. № 7. P. 43−49. DOI: https://doi.org/10.18127/j19998465-202207-04 (in Russian)
- Avremchuk E.F., Vavilov A.A. i dr. Tekhnologiya sistemnogo modelirovaniya. M.: Mashinostroenie. 1988. 520 s. (in Russian).
- Alpatov Yu.N. Modelirovanie processov i sistem upravleniya: Ucheb. posobie. SPb.: Lan', 2018. 140 s. (in Russian).
- Glushkov V.M. Obobshchennye dinamicheskie sistemy i processionnoe prognozirovanie. V kn.: Problemy prikladnoj matematiki i mekhaniki. M.: Nauka. 1971. S. 27–30 (in Russian).
- Buslenko N.P. Slozhnye sistemy i imitacionnye modeli. Kibernetika. 1976. № 6. S. 50–59 (in Russian).
- Buslenko N.P. Modelirovanie slozhnyh sistem. M.: Nauka. 1978. 399 s. (in Russian).
- Belov Yu.A., Didenko V.P., Kozlov N.N. i dr. Matematicheskoe obespechenie slozhnogo eksperimenta. Obrabotka izmerenij pri issledovanii slozhnyh sistem. Kiev: Nauk. dumka. 1982. 304 s. (in Russian).
- Konovalov A.N., YAnenko N.N. Modul'nyj princip postroeniya programm kak osnova sozdaniya paketa prikladnyh programm resheniya zadach mekhaniki sploshnoj sredy. V kn.: Kompleksy programm matematicheskoj fiziki. Novosibirsk: VC SO AN SSSR. 1972. S. 56–63 (in Russian).
- Tocenko V.G., Aleksandrov A.V., Paramonov N.B. Korrektnost', ustojchivost', tochnost' programmnogo obespecheniya. Kiev: Naukova Dumka. 1990 (in Russian).
- Informacionnye tekhnologii i vychislitel'nye sistemy. Obrabotka informacii i analiz dannyh. Programmnaya inzheneriya. Matematicheskoe modelirovanie. Prikladnye aspekty informatiki. Pod red. S.V Emel'yanova. M.: Lenand. 2016. 104 s. (in Russian).
- Vorona S.G., Lisickij V.V., Stolbov A.V. Neformalizovannye zadachi i metodologiya ih resheniya // Nelinejnyj mir. 2021. T. 19. № 3.
S. 18–28 (in Russian).