350 rub
Journal Science Intensive Technologies №7 for 2022 г.
Article in number:
The combination of low-power thermal jets with acoustic wave for precipitation enhancement in clouds
Type of article: scientific article
DOI: https://doi.org/10.18127/j19998465-202207-02
UDC: 66.011
Authors:

Wei Jiahua1, Li Tiejian2, T.V. Tulaikova3, S.R. Amirova4, Yan Diran5, Wang Jinzhao6, Chen Guoxin7

1,2 5–7 Tsinghua University, State Key Laboratory of Hydroscience& Engineering (Beijing, China)
3,4 Moscow Institute of Physics and Technology (Dolgoprudny, Moscow Region, Russia)
 

Abstract:

Problem setting. The paper belongs to methods of precipitation enhancements for reducing the problem of fresh water shortage that is known in many regions in a world. Some atmospheric affecting methods are being considered and modified in order to make them less energy-consuming, practically convenient and effective.

The purpose. The paper purpose is analysis and optimization of the joint effect of thermal up flow together with special acoustics.

Results. Temperatures, vertical air velocity and maximum height for jets are calculated based on initial energy as a result. Also model of a new method of additional lifting for the smallest powder of useful reagents is proposed based on an acoustic wave combined with a thermal jet.

Practical significance. The smart adjustment for powder to additional lifting can be obtained by means of acoustics. Applications and advantages of the proposed algorithm for accurate adjustment of hygroscopic or AgI particles are discussed.

Pages: 10-21
For citation

Wei Jiahua, Li Tiejian, T.V. Tulaikova, Amirova S.R., Yan Diran, Wang Jinzhao, Chen Guoxin. The combination of low-power thermal jets with acoustic wave for precipitation enhancement in clouds. Science Intensive Technologies. 2022. V. 23. № 7. P. 10−21. DOI: https://doi.org/10.18127/j19998465-202207-02 (in Russian)

References
  1. Dennis, A.S. Weather modification by cloud seeding. Academic Press. New York. 1980.
  2. Drofa A.S. et al. Formation of cloud microstructure: the role of hygroscopic particles, Izvestiya. Atmospheric and oceanic physics. 2006. V.42. P. 355–366.
  3. Tessendorf S.A., Bruintjes R.T. et.al. The Queensland cloud seeding research program. BAMS. 2012. V. 93. P. 74–90. DOI: 10.1175/BAMS-D-12-00060.1
  4. Bruintjes R.T. A review of cloud seeding experiments to enhance precipitation and some new prospects. BAMS. 1999. V. 80. P. 805–820.
  5. Mednikov A.P. Acoustic coagulation and precipitation of aerosols. Springer –Verlag, New York Inc. 2013. 180 p.
  6. Tulaikova T., Michtchenko A., Amirova S. Acoustic rains. Physmathbook. Moscow. 2010. 143 p.
  7. Wei JiaHua, J. Qiu, T, Li et al. Cloud and precipitation interference by strong low-frequency sound wave. Sci. Chin. Tech. Sci. 2020. V.63. https://doi.org/10.1007/s11431-019-1564-9
  8. Andreev V., Panchev S. Dynamics of atmospheric thermals. Hydrometeoizdat. Leningrad. 1975.
  9. Wulfson N.I., Levin L.M. Meteotron as a means of influencing the atmosphere. M.: Hydrometeoizdat. 1987. 130 p.
  10. Monin A. S., Yaglom A. M. Statistical Fluid Mechanics, Volume II Mechanics of Turbulence. Massachusess Inc. of Technol. USA. 1975.
  11. Ingel L.Kh. The theory of rising convective jets. Izvestiya, Atmospheric and Oceanic Physics. 2008. V. 44(2). P. 167–174. DOI: 10.1134/S0001433808020047
  12. Arakawa A., Jung, J.-H. Multiscale modeling of the moist-convective atmosphere – A review. 2011. V.102. P. 263–285.
  13. Zakinyan R., Zakinyan A., Ryzhkov R., Avanesyan K. Convection of Moist Saturated Air: Analytical Study. MDPI Atmosphere. 2016. V.7. P. 8. DOI:10.3390/atmos7010008
  14. Slade David. Meteorology and atomic energy. Atomic Energy Comission. 1968. USA.
  15. Inner Mongolia North Security Civil Explosive Equipment Co., Ltd. Accursed 22 July 2022. https://imnhigcl.en.china.cn
  16. Wei JiaHua, LiTieJia, Tulaykova T. et all. The modification of atmospheric thermal flow to get high-altitude heating with additional lifting. Science Intensive Technology. 2021. № 22 (6). P. 25–36. https://doi.org/10.18127/j19998465-202106-03
  17. Wu F., Fu C. Assessment of GEWEX/SRB version 3.0 monthly global radiation dataset over China. Meteorol Atmos Phys. 2011. V. 112. P. 155–166. DOI 10.1007/s00703-011-0136-x
  18. Landsberg G.S. Optics. Moscow. Physmatlit. 2003. 846 p.
  19. Gorsky V.V., Pugach M.A. Laminar/turbulent heat exchange on the surface of a hemisphere by a supersonic air flow. Scientific notes of TsAGI, 2018. V.XL (6). P. 36–42. https://cyberleninka.ru/article/n/laminarno-turbulentnyy-teploobmen-na-poverhnosti-polusfery-obtekaemoy-sverhzvukovym-potokom-vozduha
  20. Dew point. Accessed 2021. 15 Jun. https://vbokna.ru/kalkulyatory/tochka-rosy
  21. Nalbandyan O. The Clouds Microstructure and the Rain Stimulation by Acoustic Waves. Atmospheric and Climate Sciences 2011. V. 1. P. 86–90. doi:10.4236/acs.2011.13009 http://www.scirp.org/journal/acs
  22. Density of air. Accessed 23 August 2022. https://en.wikipedia.org/wiki/Density_of_air
  23. Acoustics. Attenuation of sound during propagation outdoors, Part 1: Calculation of the absorption of sound by the atmosphere (MOD), ISO 9613-1:1993. 2006. Accessed 28 October 2020. https://meganorm.ru/Data2/1/4293849/4293849418.htm
  24. Standard atmosphere. Parameters. Accessed 1982-07-01. http://oitsp.ru/gost/gost-4401-81
Date of receipt: 24.08.2022
Approved after review: 08.09.2022
Accepted for publication: 20.09.2022