350 rub
Journal Science Intensive Technologies №5 for 2022 г.
Article in number:
Experimental flight-test complex JSC RTI – an information and technological base for aerospace information facilities creation
Type of article: scientific article
DOI: https://doi.org/10.18127/j19998465-202205-08
UDC: 528.8
Authors:

V.V. Evdokimov1, M.K. Generalov2, N.V. Parsaev3

1–3 “Academician A.L. Mints Radiotechnical Institut” JSC (Moscow, Russia)
 

Abstract:

The most important task in the deployment of the native space constellation of radar observation of the Earth is the creation of a scientific and technical basis that provides deep experimental testing of algorithmic, technical and methodological solutions before launching information facilities into orbit. As domestic and world experience shows, the developers of all currently created space radar systems, before its deployment, carried out mandatory design and exploratory studies using aviation experimental complexes. The results was applied in various sectors of the national economy, which made it possible to provide regional and city authorities with radar images and teach how to extract from them useful information necessary for making informed and effective decisions. The purpose of this work is to propose the configuration of an experimental flight-test complex as an information and technological base for the creation of space and air-based radar facilities, ensuring the reduction of risks, time and material costs at each stage of their life cycle. As a real example of such complex the configuration of the experimental flight test-complex (EFTC), developed by “Academician A.L. Mints Radiotechnical Institut” JSC (JSC RTI) within the framework of the initiative work of “ELIK” is shown. A distinctive feature of EFTC is the use of simulation physical and mathematical modeling at all stages of the life cycle of space and air facilities of radar observation of the Earth (with the exception of disposal). The purpose and structure of the key components of the complex are considered in detail: the integrated simulation and modeling stand, the half-nature modeling stand, a model of a multi-frequency radar complex, the terrestrial mobile control and data processing station, and an experimental base. It is shown that EFTC by JSC RTI, due to simulation-semi-natural modeling and deep experimental testing, ensuring the reduction of risks, material and time costs at all stages of the life cycle of aerospace facilities of radar observation of the Earth. The concept of the EFTC as an information technology base for the creation of aerospace information facilities can be used in a number of works, carried out within the framework of the state program “Space activities of Russia in 2020–2030”.

Pages: 58-65
For citation

Evdokimov V.V., Generalov M.K., Parsaev N.V. Experimental flight-test complex JSC RTI – an information and technological base for aerospace information facilities creation. Science Intensive Technologies. 2022. V. 23. № 5. P. 58−65. DOI: https://doi.org/10.18127/j19998465-202205-08 (in Russian)

References
  1. Roth A., Hoffmann J., Esch T. TerraSar-X: How can high resolution SAR data support the observation of urban areas? Proceedings of the ISPRS WG VII/1 Human Settlements and Impact Analysis–Third International Symposium on Remote Sensing and Data Fusion Over Urban Areas (URBAN 2005) and Fifth International Symposium on Remote Sensing of Urban Areas (URS 2005). 2005. Tempe, AZ. 14–16 March.
  2. Horn R., Nottensteiner A., Scheiber R. FSAR – DLR’s advanced airborne SAR system onboard DO228. Proceedings of EUSAR 2008, Friedrichshafen, Germany. 2008.
  3. Uratsuka S., Kobayashi T., Umehara T., Matsuoka T., Nadai A., Satake M., Uemoto J. Airborne SAR Development at NICT: Concept for new Generation. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science. 2010. V. XXXVIII. Part 8.
  4. Rosen P.A., Hensley S., Wheeler K., Sadowy G., Miller T., Shaffer S., Muellerschoen R., Jones C., Zebker H., Madsen S. UAVSAR: A New NASA Airborne SAR System for Science and Technology Research. IEEE Conference on Radar. 2006.
  5. Vnotchenko S.L., Dostovalov M.Yu., D'yakov A.V., D'yakov I.V., Ermakov R.V., Zharovskaya E.P., Kovalenko A.I., Musinyanc T.G., Nejman L.S., Riman V.V., Suslov V.E. Aviacionnye mobil'nye malogabaritnye radiolokatory s sintezirovannoj aperturoj semejstva «Kompakt» (Principy realizacii i opyt primeneniya). Zhurnal radioeletroniki. 2009. № 10 (in Russian).
  6. Sahno I.V., Il'in A.L., Titov K.I., Shul'zhenko A.V. Rezul'taty eksperimental'noj ocenki real'no dostizhimyh harakteristik samoletnoj RSA. Problemy voennoprikladnoj geofiziki i kontrolya sostoyaniya prirodnoj sredy. Materialy Vsesoyuznoj konferencii, Sankt-Peterburg. 2012. S. 491–549 (in Russian).
  7. Sonin A.P., Hromcev A.V., Svirin D.M. Ustrojstvo cifrovoj radiochastotnoj pamyati (DRFM) dlya testirovaniya radiolokatorov s sintezirovannoj aperturoj antenny. Predstavlenie na premiyu imeni akademika A.L. Minca. 2017 (in Russian).
  8. Dogovor po otkrytomu nebu. Prilozhenie V: Harakteristiki i raspolozhenie ugolkovyh otrazhatelej na kalibrovochnom komplekse (in Russian).
  9. Lepekhina T.A., Nikolaev V.I. Problemnye voprosy proverki osnovnyh harakteristik kosmicheskih radiolokatorov s sintezirovannoj aperturoj pri letnyh ispytaniyah. Vestnik SibGAU. 2013. № 5(51) (in Russian).
Date of receipt: 16.05.2022
Approved after review: 27.05.2022
Accepted for publication: 22.06.2022