350 rub
Journal Science Intensive Technologies №5 for 2022 г.
Article in number:
Assessment of the capabilities and prediction of the characteristics of the atmospheric waveguide channel of radar signals propagation
Type of article: scientific article
DOI: https://doi.org/10.18127/j19998465-202205-07
UDC: 621.396.96
Authors:

A.G. Vinogradov1,2, A.N. Teokharov2

1,2 “Academician A.L. Mints Radiotechnical Institut” JSC (Moscow, Russia)
1 A.M. Obukhov Institute of Atmospheric Physics of RAS (Moscow, Russia)
 

Abstract:

On the basis of the ray and mode representation, a radar model of appearance of a waveguide channel over the sea surface is described, which makes it possible to observe targets in the shadow region at large distances compared to a direct-action radar system. Necessary and sufficient conditions for the existence of a waveguide channel for VHF waves in the near-water tropospheric layer with certain electrical properties are presented. Estimates for the number of modes excited in the waveguide, as well as a limitation on the wavelength of the radio signal are given. It is concluded that further research is needed to use the described effect in applied developments.

Pages: 49-57
For citation

Vinogradov A.G., Teokharov A.N. Estimation of coherence of the signal reflected from objects on Earth's surface in bistatic space SAR system. Science Intensive Technologies. 2022. V. 23. № 5. P. 49−57. DOI: https://doi.org/10.18127/j19998465-202205-07 (in Russian)

References
  1. Ivanov V.K., Shalyapin V.N., Levadnyj Yu.V. Razvitie metodov prognozirovaniya radiolokacionnoj nablyudaemosti nad morskoj poverhnost'yu v IRE NAN Ukrainy. Radiofizika i elektronika. 2009. T. 14. № 3. S. 299–314 (in Russian).
  2. Gavrilov A.S., Petrov Yu. S. Metody rascheta struktury privodnogo sloya atmosfery primenitel'no k zadacham radiolokacii nad okeanom. Rasseyanie i difrakciya radiolokacionnyh signalov i ih informativnost'. L.: Izd-vo SZPI. 1984. S. 31–36 (in Russian).
  3. Rogers L.T., Pauls R.A. Measured performance of evaporation duct models. Proc. Battlespase Atmospherics Conference. 3–5 Dec 1996. NRaDTD2938 (ADA323038). P. 1996.
  4. Mycenko I.M., Pankratov L.S., Homenko S.I. Eksperimental'noe issledovanie dal'nosti dejstviya sudovyh navigacionnyh RLS santimetrovogo diapazona v rajonah Mirovogo okeana. Harkіv: Harkіvs'kij vіjs'kovij un-t. 2001. Vip. 2(32). S. 56–59 (in Russian).
  5. Rotheram S. Radiowave propagation in the evaporation in the evaporation duct. The marooning Rev. 1974. 42. R. 18–40.
  6. Mycenko I.M., Roenko A.N., Homenko S.I. Diagnostika i prognozirovanie dal'nosti dejstviya sudovyh navigacionnyh RLS trekhsantimetrovogo diapazona. Radiofizika i elektronika: sb. nauch. tr.. In-t radiofiziki i elektron. NAN Ukrainy. H., 2001. 6, № 1. S. 67–71 (in Russian).
  7. Mycenko I.M. Issledovanie rasprostraneniya radiovoln santimetrovogo diapazona pri nalichii volnovoda ispareniya. Radiofizika i elektronika: sb. nauch. tr.. In-t radiofiziki i elektron. NAN Ukrainy. H., 2008. 13, № 2. S. 173–177 (in Russian).
  8. Svetlichnyj V.A., Smirnova O.V. Primenenie geoinformacionnyh sistem dlya operativnogo prognozirovaniya radiolokacionnoj nablyudaemosti ob"ektov. Informaciya i kosmos. 2014. № 4. S. 73–76 (in Russian).
  9. Ozgun O., Apaydin G., Kuzuoglu M., Sevgi L. PETOOL: MATLAB-based one-way and two-way split-step parabolic equation tool for radiowave propagation over variable terrain. Computer Physics Communications. 2011. V. 182. Iss. 12. P. 2638–2654.
  10. Tatarskij V.I. Rasprostranenie voln v turbulentnoj atmosfere. M.: Nauka. 1967 (in Russian).
  11. Andreas E.L. Parametrizing scalar transfer over snow and ice: a review. Journal of hydrometeorology. 2002. V. 3. P. 417–431.
  12. Westwater E.R., Han Y., Leuskiy V., Kadygrov E.N., Viazankin S.A. Remote sensing of boundary layer temperature profiles by a scanning 5-mm microwave radiometer and RASS: Comparison experiment. Atmos. Oceanic Technol., 1999. 16, 7. P. 805–818.
  13. Ivanov V.K., Shalyapin V. N., Levadnyj Yu. V. Opredelenie vysoty volnovoda ispareniya po standartnym meteorologicheskim dannym. Izv. RAN. Fizika Atmosfery i Okeana. 2007. № 1. S. 42–51 (in Russian).
  14. Monin A.S., Yaglom A.M. Statisticheskaya gidromekhanika. M.: Nauka. 1 ch. 1965, 640 s.; 2 ch. 1967. 720 s. (in Russian).
  15. Chalikov D.V. O profilyah vetra i temperatury v prizemnom sloe atmosfery pri ustojchivosti stratifikacii. Trudy GGO. 1968. Vyp. 207. S. 170–173 (in Russian).
  16. Fok V.A. Problemy difrakcii i rasprostraneniya elektromagnitnyh voln. M.: Sov. radio. 1970 (in Russian).
  17. Fejnberg E.L. Rasprostranenie radiovoln vdol' zemnoj poverhnosti. M.: Nauka. Fizmatlit. 1999 (in Russian).
  18. Ivanov V.K., Lanovoj V.N., Frejliher V.D. Vliyanie fluktuacij parametrov turbulentnosti na zatuhanie voln v troposfernom volnovode. Izv. vuzov. Ser. Radiofizika. 1989. № 3. S. 255–266 (in Russian).
  19. Muschinski A., Worthington R.M., Frehlich R.G., Jensen M.L., Balsley B.B. 2000: Turbulence spectra and vertical profiles of energy dissipation rate and temperature structure parameter in thin turbulent layers embedded in a stably stratified environment. Proceed. 14th Symp. on Boundary Layer and Turbulence, Aspen, paper 7.3.
Date of receipt: 16.05.2022
Approved after review: 27.05.2022
Accepted for publication: 22.06.2022