350 rub
Journal Science Intensive Technologies №5 for 2022 г.
Article in number:
Estimation of coherence of the signal reflected from objects on Earth's surface in bistatic space SAR system
Type of article: scientific article
DOI: https://doi.org/10.18127/j19998465-202205-06
UDC: 621.396.96
Authors:

A.G. Vinogradov1, A.N. Teokharov2

1,2 “Academician A.L. Mints Radiotechnical Institut” JSC (Moscow, Russia)
1 A. M. Obukhov Institute of Atmospheric Physics of RAS (Moscow, Russia)
 

Abstract:

Effect of Earth's atmosphere inhomogeneity on signal coherence in a bistatic space SAR system observing Earth’s surface is analyzed. The analysis is carried out in the approximation of the geometrical optics. The residual phase breaking signal coherence is estimated for both regular and random variation of dielectric permittivity of Earth's troposphere and ionosphere. Using these estimates, the feasible synthesis time is evaluated for signals of X, L, UHF, and VHF bands for both, strongly and weakly disturbed atmosphere.

Pages: 41-48
For citation

Vinogradov A.G., Teokharov A.N. Estimation of coherence of the signal reflected from objects on Earth's surface in bistatic space SAR system. Science Intensive Technologies. 2022. V. 23. № 5. P. 41−48. DOI: https://doi.org/10.18127/j19998465-202205-06 (in Russian)

References
  1. Vinogradov A.G., Luchin A.A., Teoharov A.N. Obrabotka sverhshirokopolosnyh signalov i formirovaniya radiolokacionnyh izobrazhenij v RLS dal'nego obnaruzheniya L-diapazona. Naukoemkie tekhnologii. 2013. T. 14. № 9. S. 32–36 (in Russian).
  2. Vinogradov A.G., Teoharov A.N. Dvuhpolosnyj metod ocenki polnogo elektronnogo soderzhaniya ionosfery po signalam shirokopolosnoj RLS. Dinamicheskie sistemy. 2016. T. 6(34). № 3. S. 275–287 (in Russian).
  3. Vinogradov A. G., Teoharov A. N. Primenenie dvuhpolosnogo metoda ocenki polnogo elektronnogo soderzhaniya ionosfery po shirokopolosnomu signalu, otrazhennomu ot slozhnogo ob"ekta. Dinamicheskie sistemy. 2016. T. 6(34). № 3. S. 369–379 (in Russian).
  4. Kravcov Yu.A., Fejzulin Z.I., Vinogradov A.G. Prohozhdenie radiovoln cherez atmosferu Zemli. M.: Radio i svyaz'. 1983. 224 s. (in Russian).
  5. Vinogradov A.G., Teoharov A.N. Model' podobiya dielektricheskoj pronicaemosti v turbulentnoj atmosfere s anizomernymi neodnorodnostyami. Trudy XXVI Vseros. otkrytoj nauch. konf. «Rasprostranenie radiovoln» (RRV-26). Kazan'. 1–6 iyulya 2019 g. Tom II. S. 469–472 (in Russian).
  6. Vinogradov A.G., Teoharov A.N. Korrelyaciya fluktuacij fazy volny, rasprostranyayushchejsya v anizomernoj turbulentnoj atmosfere. Trudy XXVI Vseros. otkrytoj nauchnoj konferencii «Rasprostranenie radiovoln» (RRV-26). Kazan', 1–6 iyulya 2019 g. Tom II. S. 465–468 (in Russian).
  7. Vinogradov A.G., Teoharov A.N. Model' podobiya prostranstvennyh spektrov sluchajnyh anizomernyh neodnorodnostej dielektricheskoj pronicaemosti atmosfery i ee prilozhenie k zadacham rasprostraneniya voln. Izv. RAN. Ser. Fizika atmosfery i okeana. 2020. T. 56.
    № 1. S. 76–88 (in Russian).
  8. Tatarskij V.I. Rasprostranenie voln v turbulentnoj atmosfere. M.: Nauka. 1967 (in Russian).
  9. Obuhov A.M. Turbulentnost' i dinamika atmosfery. L.: Gidrometeoizdat. 1988. 414 s. (in Russian).
  10. Gossard E., Huk U.H. Volny v atmosfere: Infrazvuk i gravitacionnye volny v atmosfere – ih vozniknovenie i rasprostranenie. M.: Mir. 1978. T. 1–2 (in Russian).
  11. Guvich A. S., Chunchuzov I. P. Parameters of the fine density structure in the stratosphere obtained from spacecraft observations of stellar scintillations. J. Geophys. Res. 2003. V. 108, № D5, 4166. doi:10,1029/2002JD002281.
Date of receipt: 16.05.2022
Approved after review: 27.05.2022
Accepted for publication: 22.06.2022