350 rub
Journal Science Intensive Technologies №2 for 2022 г.
Article in number:
Selection and optimization of cooling systems ship control equipment
DOI: https://doi.org/10.18127/j19998465-202202-06
UDC: 53
Authors:

V.V. Sukhov1

1 Concern Morinsis-Agat JSC (Moscow, Russia)

Abstract:

To solve the problems of managing ships of various classes, electronic computer facilities (ECF) are widely used. Almost all the energy supplied to the ECF from the ship's electrical networks is converted into heat inside the ECF.

This article is devoted to the systems of heat removal in a shipboard ECF. The issues of placing these products on objects are considered. An analysis of the energy characteristics is carried out, taking into account the contribution to the general characteristics of the object.

The purpose of this article is to choose a cooling system that will optimally meet the requirements for ECF and ensure its reliability during the entire operation of the system.

Cooling systems must ensure the operation of the ECF on the objects without significantly degrading the performance of the ECF and the ship where it is installed. The operational characteristics of the object or the ship that must be taken into account when choosing a cooling system include the volume and mass of the ECF, the energy consumed for the cooled ECF and the ship's support systems.

The cooling systems of the shipboard ECF are complex engineering structures. They include refrigerators, pumps, fans, heat exchangers, air ducts. Therefore, the choice of the type of ECF cooling system that is optimal for a ship of a certain class can only be made by considering this task with the ship's designers.

The first part of this article discusses cooling systems in the form of radiators and heat sinks, by which boards and instrument modules are equipped, that transfer heat from electro-radio elements to the case. The analysis of various cooling systems was carried out. This allowed the development of a methodology for evaluating the choice of cooling systems and the equipment used.

The results of research and development of new elements of cooling systems are carried out: heat exchange surfaces, thermoelectric refrigerators with a cooling capacity of 102 – 106 watts, a device for monitoring the temperature difference of water entering and exiting and exiting the cooling system.

Pages: 59-69
For citation

Sukhov V.V. Selection and optimization of cooling systems ship control equipment. Science Intensive Technologies. 2022. V. 23. № 2.
P. 59−69. DOI: https://doi.org/10.18127/j19998465-202202-06 (in Russian)

References
  1. Poludnicin A.N. Nadkriticheskie konvektivnye techeniya vozduha v naklonyaemoj zamknutoj polosti: Dis. … kand. fiz.-mat. nauk. Perm'. 2018. 108 s. (in Russian)
  2. Kutateladze S.S. Spravochnik po teplotekhnike. M.: Gosenergoizdat. 2008. 418 s. (in Russian).
  3. Alifanov O.M. Obratnye zadachi v issledovanii slozhnogo teploobmena. M.: YAnus-K. 2009. 300 s. (in Russian).
  4. Kosterev F.M. Teoreticheskie osnovy teplotekhniki. M.: Energiya. 2018. 360 s. (in Russian).
  5. Greber G., Erk S., Grigull' U. Osnovy ucheniya o teploobmene: Per. s nem. M.: Gosenergoizdat. 2009. 239 s. (in Russian).
  6. Teplotekhnika: uchebnik dlya vuzov. Pod obshch. red. A.M. Arharova. Izd. 3-e, pererab. i dopoln. M.: Izd. MGTU im. N.E. Baumana. 2011. 792 s. (in Russian).
  7. Bessonnyj A.N., Drejcer G.A., Kuntysh V.B. i dr. Osnovy rascheta i proektirovaniya tepeloobmennikov vozdushnogo ohlazhdeniya: Spravochnik. SPb.: Nedra. 1996. 512 s. (in Russian).
  8. Teplotekhnika: Uchebnik dlya vuzov. Pod obshch. red. V.N. Lukanina. M.: Vysshaya shkola. 2009. 672 s. (in Russian).
  9. Uong H. Osnovnye formuly i dannye po teploobmenu dlya inzhenerov. M.: Atomizdat. 2016. 216 s. (in Russian).
  10. Zuev A.S., Suhov V.V., Andreeva O.N., Ekshembiev S.H. Teplomassoobmen v elektronno-vychislitel'noj tekhnike: Ucheb. posobie. CH. 1. M.: MIREA RTU. 102 s. (in Russian).
  11. Kondrat'ev G.M. Prikladnaya fizika: Teploobmen v priborostroenii. SPb.: SPbGUITMO. 2003. 343 s. (in Russian).
  12. Dul'nev G.N. Sistemy ohlazhdeniya priborov. L.: LITMO. 1984. 340 s. (in Russian).
  13. Katalog ELFA FB. M. 2003. 2288 c. (in Russian).
  14. Voronin G.I. Effektivnye teploobmenniki. M.: Mashinostroenie. 1973. 232 s. (in Russian).
  15. Bulat L.P. Termoelektricheskie ohlazhdayushchie ustrojstva. SPb.: SPbGUNiPT. 2001. 41s.  (in Russian).
  16. GOST 15150-69. Mashiny, pribory i drugie tekhnicheskie izdeliya. Ispolneniya dlya razlichnyh klimaticheskih rajonov. Kategorii, usloviya ekspluatacii v chasti vozdejstviya faktorov vneshnej sredy (in Russian).
  17. Termoelektricheskie ohladiteli. Pod red. A.L. Vajnera. M.: Radio i svyaz'. 1983. 176 s. (in Russian).
  18. Anatychuk L.I. Termoelementy i termoelektricheskie materialy. Kiev: Naukova dumka. 1979. 126 s. (in Russian).
  19. Ioffe A.F. Izbrannye trudy. T. 2. L.: Nauka. 1975. 200 s. (in Russian).
  20. Romashchenko M.A. Modelirovanie i optimizaciya termoelektricheskih ohlazhdayushchih ustrojstv: avtoreferat dissertacii na soiskanie uchenoj stepeni kandidat tekhnicheskih nauk. M. 2008. 20 s. (in Russian).
  21. Arakelov G.A., Magnushevskij V.R., Sivenkov V.elektricheskoe N., Troickij I.M., Kazancev G.A. Konstrukciya mnogoploshchadnogo fotopriemnika s termoelektricheskim ohladitelem. Prikladnaya fizika. 2002. № 4. 6 s. (in Russian).
  22. Dul'nev G.N. Teplo i massoobmen v radioelektronnoj apparature. M.: Vysshaya shkola. 1984. 250 s. (in Russian).
  23. Ivanov G.M. Teplotekhnicheskie izmereniya i pribory. M.: Izd. MEI. 2005. 281 s. (in Russian).
Date of receipt: 20.01.2022
Approved after review: 31.01.2022
Accepted for publication: 07.02.2022